ترغب بنشر مسار تعليمي؟ اضغط هنا

A catalogue of nuclear stellar velocity dispersions of nearby galaxies from H$alpha$ STIS spectra to constrain supermassive black hole masses

62   0   0.0 ( 0 )
 نشر من قبل Ilaria Pagotto
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف I. Pagotto




اسأل ChatGPT حول البحث

We present new measurements for the nuclear stellar velocity dispersion $sigma_{ast}$ within sub-arcsecond apertures for 28 nearby galaxies. Our data consist of Space Telescope Imaging Spectrograph (STIS) long-slit spectra obtained with the G750M grating centred on the H$alpha$ spectral range. We fit the spectra using a library of single stellar population models and Gaussian emission lines, while constraining in most cases the stellar-population content from an initial fit to G430L STIS spectra. We illustrate how these $sigma_{ast}$ measurements can be useful for constraining the mass $M_{bullet}$ of supermassive black holes (SBHs) by concentrating on the cases of the lenticular galaxies NGC4435 and NGC4459. These are characterized by similar ground-based half-light radii stellar velocity dispersion $sigma_{rm e}$ values but remarkably different $M_{bullet}$ as obtained from modelling their central ionised-gas kinematics, where NGC4435 appears to host a significantly undermassive SBH compared to what is expected from the $M_{bullet}-sigma_{rm e}$ relation. For both galaxies, we build Jeans axisymmetric dynamical models to match the ground-based stellar kinematics obtained with SAURON integral-field spectrograph, including a SBH with $M_{bullet}$ value as predicted by the $M_{bullet}-sigma_{rm e}$ relation and using high-resolution HST images taken with the Advanced Camera for Surveys to construct the stellar-mass model. By mimicking the HST observing conditions we use such reference models to make a prediction for the nuclear $sigma_{ast}$ value. Whereas this was found to agree with our nuclear $sigma_{ast}$ measurement for NGC4459, for NGC4435 the observed $sigma_{ast}$ is remarkably smaller than the predicted one, which further suggests that this galaxy could host an undermassive SBH.



قيم البحث

اقرأ أيضاً

494 - Gabriela Canalizo 2008
Much progress has been made in measuring black hole (BH) masses in (non-active) galactic nuclei using the tight correlation between stellar velocity dispersions (sigma) in galaxies and the mass of their central BH. The use of this correlation in quas ars, however, is hampered by the difficulty in measuring sigma in host galaxies that tend to be overpowered by their bright nuclei. We discuss results from a project that focuses on z~0.3 quasars suffering from heavy extinction at shorter wavelengths. This makes it possible to obtain clean spectra of the hosts in the spectral regions of interest, while broad lines (like H-alpha) are still visible at longer wavelengths. We compare BH masses obtained from velocity dispersions to those obtained from the broad line region and thus probe the evolution of this relation and BH growth with redshift and luminosity. Our preliminary results show an offset between the position of our objects and the local relation, in the sense that red quasars have, on average, lower velocity dispersions than local galaxies. We discuss possible biases and systematic errors that may affect our results.
113 - I. Pagotto 2017
We present new stringent limits on the mass $M_{bh}$ of the central supermassive black hole for a sample of 7 nearby galaxies. Our $M_{bh}$ estimates are based on the dynamical modeling of the central width of the nebular emission lines measured over subarcsecond apertures with the Hubble Space Telescope. The central stellar velocity dispersion $sigma_c$ of the sample galaxies is derived from new long-slit spectra from ground-based observations and the bulge effective radius is obtained from a two-dimensional photometric decomposition of the i-band images from the Sloan Digital Sky Survey. The derived stringent $M_{bh}$ limits run parallel and above the $M_{bh}-sigma_c$ relation with no systematic trend depending on the galaxy distance or morphology. This gives further support to previous findings suggesting that the nuclear gravitational potential is remarkably well traced by the width of the nebular lines when the gas is centrally peaked. With our investigation, the number of galaxies with stringent $M_{bh}$ limits obtained from nebular-line width increases to 114 and can be used for studying the scaling relations between $M_{bh}$ and properties of their host galaxies.
We present tables of velocity dispersions derived from CALIFA V1200 datacubes using Pipe3D. Four different dispersions are extracted from emission (ionized gas) or absorption (stellar) spectra, with two spatial apertures (5 and 30). Stellar and ioniz ed gas dispersions are not interchangeable and we determine their distinguishing features. We also compare these dispersions with literature values and construct sample scaling relations to further assess their applicability. We consider revised velocity-based scaling relations using the virial velocity parameter S_K^2 = K V_rot^2 + sigma^2 constructed with each of our dispersions. Our search for the strongest linear correlation between S_K and i-band absolute magnitudes favors the common K ~ 0.5, though the range 0.3 - 0.8 is statistically acceptable. The reduction of scatter in our best stellar mass-virial velocity relations over that of a classic luminosity-velocity relation is minimal; this may however reflect the dominance of massive spirals in our sample.
The formation and growth processes of supermassive black holes (SMBHs) are not well constrained. SMBH population models, however, provide specific predictions for the properties of the gravitational-wave background (GWB) from binary SMBHs in merging galaxies throughout the Universe. Using observations from the Parkes Pulsar Timing Array, we constrain the fractional GWB energy density with 95% confidence to be ${Omega}_{GW}(H_0/73 {rm km} {rm s}^{-1} {rm Mpc}^{-1})^2 < 1.3 times 10^{-9}$ at a frequency of 2.8 nHz, which is approximately a factor of six more stringent than previous limits. We compare our limit to models of the SMBH population and find inconsistencies at confidence levels between 46% and 91%. For example, the standard galaxy formation model implemented in the Millennium simulations is inconsistent with our limit with 50% probability.
Megamaser disks provide the most precise and accurate extragalactic supermassive black hole masses. Here we describe a search for megamasers in nearby galaxies using the Green Bank Telescope (GBT). We focus on galaxies where we believe that we can re solve the gravitational sphere of influence of the black hole and derive a stellar or gas dynamical measurement with optical or NIR observations. Since there are only a handful of super massive black holes (SMBH) that have direct black hole mass measurements from more than one method, even a single galaxy with a megamaser disk and a stellar dynamical black hole mass would provide necessary checks on the stellar dynamical methods. We targeted 87 objects from the Hobby-Eberly Telescope Massive Galaxy Survey, and detected no new maser disks. Most of the targeted objects are elliptical galaxies with typical stellar velocity dispersions of 250 km/s and distances within 130 Mpc. We discuss the implications of our non-detections, whether they imply a threshold X-ray luminosity required for masing, or possibly reflect the difficulty of maintaining a masing disk around much more massive (>10^8 Msun) black holes at low Eddington ratio. Given the power of maser disks at probing black hole accretion and demographics, we suggest that future maser searches should endeavour to remove remaining sample biases, in order to sort out the importance of these covariant effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا