ترغب بنشر مسار تعليمي؟ اضغط هنا

Analytical properties of the gluon propagator from truncated Dyson-Schwinger equation in complex Euclidean space

245   0   0.0 ( 0 )
 نشر من قبل Leonid P Kaptari
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We suggest a framework based on the rainbow approximation with effective parameters adjusted to lattice data. The analytic structure of the gluon and ghost propagators of QCD in Landau gauge is analyzed by means of numerical solutions of the coupled system of truncated Dyson-Schwinger equations. We find that the gluon and ghost dressing functions are singular in complex Euclidean space with singularities as isolated pairwise conjugated poles. These poles hamper solving numerically the Bethe-Salpeter equation for glueballs as bound states of two interacting dressed gluons. Nevertheless, we argue that, by knowing the position of the poles and their residues, a reliable algorithm for numerical solving the Bethe-Salpeter equation can be established.



قيم البحث

اقرأ أيضاً

403 - S. M. Dorkin 2013
In view of the mass spectrum of heavy mesons in vacuum the analytical properties of the solutions of the truncated Dyson-Schwinger equatio for the quark propagator within the rainbow approximation are analysed in some detail. In Euclidean space, the quark propagator is not an analytical function possessing, in general, an infinite number of singularities (poles) which hamper to solve the Bethe-Salpeter equation. However, for light mesons (with masses M_{qbar q} <= 1 GeV) all singularities are located outside the region within which the Bethe-Salpeter equation is defined. With an increase of the considered meson masses this region enlarges and already at masses >= 1 GeV, the poles of propagators of u,d and s quarks fall within the integration domain of the Bethe-Salpeter equation. Nevertheless, it is established that for meson masses up to M_{qbar q}~=3 GeV only the first, mutually complex conjugated, poles contribute to the solution. We argue that, by knowing the position of the poles and their residues, a reliable parametrisation of the quark propagators can be found and used in numerical procedures of solving the Bethe-Salpeter equation. Our analysis is directly related to the future physics programme at FAIR with respect to open charm degrees of freedom.
An approach based on combined solutions of the Bethe-Salpeter (BS) and Dyson-Schwinger (DS) equations within the ladder-rainbow approximation in the presence of singularities is proposed to describe the meson spectrum as quark antiquark bound states. We consistently implement into the BS equation the quark propagator functions from the DS equation, with and without pole-like singularities, and show that, by knowing the precise positions of the poles and their residues, one is able to develop reliable methods of obtaining finite interaction BS kernels and to solve the BS equation numerically. We show that, for bound states with masses $M < 1$ GeV, there are no singularities in the propagator functions when employing the infrared part of the Maris-Tandy kernel in truncated BS-DS equations. For $M >1 $ GeV, however, the propagator functions reveal pole-like structures. Consequently, for each type of mesons (unflavored, strange and charmed) we analyze the relevant intervals of $M$ where the pole-like singularities of the corresponding quark propagator influence the solution of the BS equation and develop a framework within which they can be consistently accounted for. The BS equation is solved for pseudo-scalar and vector mesons. Results are in a good agreement with experimental data. Our analysis is directly related to the future physics programme at FAIR with respect to open charm degrees of freedom.
144 - Peter Lowdon 2018
The gluon propagator plays a central role in determining the dynamics of QCD. In this work we demonstrate for BRST quantised QCD that the Dyson-Schwinger equation imposes significant analytic constraints on the structure of this propagator. In partic ular, we find that these constraints control the appearance of massless components in the gluon spectral density.
We solve the Minkowski-space Schwinger-Dyson equation (SDE) for the fermion propagator in quantum electrodynamics (QED) with massive photons. Specifically, we work in the quenched approximation within the rainbow-ladder truncation. Loop-divergences a re regularized by the Pauli-Villars regularization. With moderately strong fermion-photon coupling, we find that the analytic structure of the fermion propagator consists of an on-shell pole and branch-cuts located in the timelike region. Such structures are consistent with the direct solution of the fermion propagator as functions of the complex momentum. Our method paves the way towards the calculation of the Minkowski-space Bethe-Salpeter amplitude using dressed fermion propagator.
In view of the properties of mesons in hot strongly interacting matter the properties of the solutions of the truncated Dyson-Schwinger equation for the quark propagator at finite temperatures within the rainbow-ladder approximation are analysed in s ome detail. In Euclidean space within the Matsubara imaginary time formalism the quark propagator is not longer a O(4) symmetric function and possesses a discrete spectra of the fourth component of the momentum. This makes the treatment of the Dyson-Schwinger and Bethe-Salpeter equations conceptually different from the vacuum and technically much more involved. The question whether the interaction kernel known from vacuum calculations can be applied at finite temperatures remains still open. We find that, at low temperatures, the model interaction with vacuum parameters provides a reasonable description of the quark propagator, while at temperatures higher than a certain critical value $T_c$ the interaction requires stringent modifications. The general properties of the quark propagator at finite temperatures can be inferred from lattice QCD calculations. We argue that, to achieve a reasonable agreement of the model calculations with that from lattice QCD, the kernel is to be modified in such a way as to screen the infra-red part of the interaction at temperatures larger than $T_c$. For this, we analyse the solutions of the truncated Dyson-Schwinger equation with existing interaction kernels in a large temperature range with particular attention on high temperatures in order to find hints to an adequate temperature dependence of the interaction kernel to be further implemented in to the Bethe-Salpeter equation for mesons. This will allow to investigate the possible in medium modifications of the meson properties as well as the conditions of quark deconfinement in hot matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا