ترغب بنشر مسار تعليمي؟ اضغط هنا

An ALMA view of molecular filaments in the Large Magellanic Cloud I: The formation of high-mass stars and pillars in the N159E-Papillon Nebula triggered by a cloud-cloud collision

75   0   0.0 ( 0 )
 نشر من قبل Kazuki Tokuda
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the ALMA observations of CO isotopes and 1.3 mm continuum emission toward the N159E-Papillon Nebula in the Large Magellanic Cloud (LMC). The spatial resolution is 025-028 (0.06-0.07 pc), which is a factor of 3 higher than the previous ALMA observations in this region. The high resolution allowed us to resolve highly filamentary CO distributions with typical widths of $sim$0.1 pc (full width half maximum) and line masses of a few 100 $M_{odot}$ pc$^{-1}$. The filaments (more than ten in number) show an outstanding hub-filament structure emanating from the nebular center toward the north. We identified for the first time two massive protostellar outflows of $sim$10$^4$ yr dynamical age along one of the most massive filaments. The observations also revealed several pillar-like CO features around the Nebula. The H II region and the pillars have a complementary spatial distribution and the column density of the pillars is an order of magnitude higher than that of the pillars in the Eagle nebula (M16) in the Galaxy, suggesting an early stage of pillar formation with an age younger than $sim$10$^5$ yr. We suggest that a cloud-cloud collision triggered the formation of the filaments and protostar within the last $sim$2 Myr. It is possible that the collision is more recent, as part of the kpc-scale H I flows come from the tidal interaction resulting from the close encounter between the LMC and SMC $sim$200 Myr ago as suggested for R136 by Fukui et al.

قيم البحث

اقرأ أيضاً

We have carried out 13CO(J=2-1) observations of the active star-forming region N159 West in the LMC with ALMA. We have found that the CO distribution at a sub-pc scale is highly elongated with a small width. These elongated clouds called filaments sh ow straight or curved distributions with a typical width of 0.5-1.0pc and a length of 5-10pc. All the known infrared YSOs are located toward the filaments. We have found broad CO wings of two molecular outflows toward young high-mass stars in N159W-N and N159W-S, whose dynamical timescale is ~10^4 yrs. This is the first discovery of protostellar outflow in external galaxies. For N159W-S which is located toward an intersection of two filaments we set up a hypothesis that the two filaments collided with each other ~10^5 yrs ago and triggered formation of the high-mass star having ~37 Mo. The colliding clouds show significant enhancement in linewidth in the intersection, suggesting excitation of turbulence in the shocked interface layer between them as is consistent with the magneto-hydro-dynamical numerical simulations (Inoue & Fukui 2013). This turbulence increases the mass accretion rate to ~6x10^-4 Mo yr^-1, which is required to overcome the stellar feedback to form the high-mass star.
We present high-resolution (sub-parsec) observations of a giant molecular cloud in the nearest star-forming galaxy, the Large Magellanic Cloud. ALMA Band 6 observations trace the bulk of the molecular gas in $^{12}$CO(2-1) and high column density reg ions in $^{13}$CO(2-1). Our target is a quiescent cloud (PGCC G282.98-32.40, which we refer to as the Planck cold cloud or PCC) in the southern outskirts of the galaxy where star-formation activity is very low and largely confined to one location. We decompose the cloud into structures using a dendrogram and apply an identical analysis to matched-resolution cubes of the 30 Doradus molecular cloud (located near intense star formation) for comparison. Structures in the PCC exhibit roughly 10 times lower surface density and 5 times lower velocity dispersion than comparably sized structures in 30 Dor, underscoring the non-universality of molecular cloud properties. In both clouds, structures with relatively higher surface density lie closer to simple virial equilibrium, whereas lower surface density structures tend to exhibit super-virial line widths. In the PCC, relatively high line widths are found in the vicinity of an infrared source whose properties are consistent with a luminous young stellar object. More generally, we find that the smallest resolved structures (leaves) of the dendrogram span close to the full range of line widths observed across all scales. As a result, while the bulk of the kinetic energy is found on the largest scales, the small-scale energetics tend to be dominated by only a few structures, leading to substantial scatter in observed size-linewidth relationships.
We report the first evidence for high-mass star formation triggered by collisions of molecular clouds in M33. Using the Atacama Large Millimeter/submillimeter Array, we spatially resolved filamentary structures of giant molecular cloud 37 in M33 usin g $^{12}$CO($J$ = 2-1), $^{13}$CO($J$ = 2-1), and C$^{18}$O($J$ = 2-1) line emission at a spatial resolution of $sim$2 pc. There are two individual molecular clouds with a systematic velocity difference of $sim$6 km s$^{-1}$. Three continuum sources representing up to $sim$10 high-mass stars with the spectral types of B0V-O7.5V are embedded within the densest parts of molecular clouds bright in the C$^{18}$O($J$ = 2-1) line emission. The two molecular clouds show a complementary spatial distribution with a spatial displacement of $sim$6.2 pc, and show a V-shaped structure in the position-velocity diagram. These observational features traced by CO and its isotopes are consistent with those in high-mass star-forming regions created by cloud-cloud collisions in the Galactic and Magellanic Cloud HII regions. Our new finding in M33 indicates that the cloud-cloud collision is a promising process to trigger high-mass star formation in the Local Group.
We report on a study of the high-mass star formation in the the HII region W28A2 by investigating the molecular clouds extended over ~5-10 pc from the exciting stars using the 12CO and 13CO (J=1-0) and 12CO (J=2-1) data taken by the NANTEN2 and Mopra observations. These molecular clouds consist of three velocity components with the CO intensity peaks at V_LSR ~ -4 km s$^{-1}$, 9 km s$^{-1}$ and 16 km s$^{-1}$. The highest CO intensity is detected at V_LSR ~ 9 km s$^{-1}$, where the high-mass stars with the spectral types of O6.5-B0.5 are embedded. We found bridging features connecting these clouds toward the directions of the exciting sources. Comparisons of the gas distributions with the radio continuum emission and 8 um infrared emission show spatial coincidence/anti-coincidence, suggesting physical associations between the gas and the exciting sources. The 12CO J=2-1 to 1-0 intensity ratio shows a high value (> 0.8) toward the exciting sources for the -4 km s$^{-1}$ and +9 km s$^{-1}$ clouds, possibly due to heating by the high-mass stars, whereas the intensity ratio at the CO intensity peak (V_LSR ~ 9 km s$^{-1}$) lowers down to ~0.6, suggesting self absorption by the dense gas in the near side of the +9 km s$^{-1}$ cloud. We found partly complementary gas distributions between the -4 km s$^{-1}$ and +9 km s$^{-1}$ clouds, and the -4 km s$^{-1}$ and +16 km s$^{-1}$ clouds. The exciting sources are located toward the overlapping region in the -4 km s$^{-1}$ and +9 km s$^{-1}$ clouds. Similar gas properties are found in the Galactic massive star clusters, RCW 38 and NGC 6334, where an early stage of cloud collision to trigger the star formation is suggested. Based on these results, we discuss a possibility of the formation of high-mass stars in the W28A2 region triggered by the cloud-cloud collision.
We report a possibility that the high-mass star located in the HII region RCW 34 was formed by a triggering induced by a collision of molecular clouds. Molecular gas distributions of the $^{12}$CO and $^{13}$CO $J=$2-1, and $^{12}$CO $J=$3-2 lines to ward RCW 34 were measured by using the NANTEN2 and ASTE telescopes. We found two clouds with the velocity ranges of 0-10 km s$^{-1}$ and 10-14 km s$^{-1}$. Whereas the former cloud as massive as ~2.7 x 10$^{4}$ Msun has a morphology similar to the ring-like structure observed in the infrared wavelengths, the latter cloud with the mass of ~10$^{3}$ Msun, which has not been recognized by previous observations, distributes just likely to cover the bubble enclosed by the other cloud. The high-mass star with the spectral types of O8.5V is located near the boundary of the two clouds. The line intensity ratio of $^{12}$CO $J=$3-2 / $J=$2-1 yields high values (~1.5) in the neighborhood of the high-mass star, suggesting that these clouds are associated with the massive star. We also confirmed that the obtained position-velocity diagram shows a similar distribution with that derived by a numerical simulation of the supersonic collision of two clouds. Using the relative velocity between the two clouds (~5 km s$^{-1}$), the collisional time scale is estimated to be $sim$0.2 Myr with the assumption of the distance of 2.5 kpc. These results suggest that the high-mass star in RCW 34 was formed rapidly within a time scale of ~0.2 Myr via a triggering of cloud-cloud collision.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا