ترغب بنشر مسار تعليمي؟ اضغط هنا

Ordered magnetism in the intrinsically decorated $jrm{_{eff}}$ = $frac{1}{2}$ $alpha$-CoV$_{3}$O$_{8}$

96   0   0.0 ( 0 )
 نشر من قبل Paul Sarte
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The antiferromagnetic mixed valence ternary oxide $alpha$-CoV$_{3}$O$_{8}$ displays disorder on the Co$^{2+}$ site that is inherent to the $Ibam$ space group. The zero field structural and dynamic properties of $alpha$-CoV$_{3}$O$_{8}$~have been investigated using a combination of neutron and x-ray diffraction, DC susceptibility, and neutron spectroscopy. The low temperature magnetic and structural properties are consistent with a random macroscopic distribution of Co$^{2+}$ over the 16$k$ metal sites. However, by applying the sum rules of neutron scattering we observe the collective magnetic excitations are parameterized with an ordered Co$^{2+}$ arrangement and critical scattering consistent with a three dimensional Ising universality class. The low energy spectrum is well-described by Co$^{2+}$ cations coupled $via$ a three dimensional network composed of competing ferromagnetic and stronger antiferromagnetic superexchange within the $ab$ plane and along $c$, respectively. While the extrapolated Weiss temperature is near zero, the 3D dimensionality results in long range antiferromagnetic order at $Trm{_{N}}sim$ 19 K. A crystal field analysis finds two bands of excitations separated in energy at $hbar omega$ $sim$ 5 meV and 25 meV, consistent with a $jrm{_{eff}}=frac{1}{2}$ ground state with little mixing between spin-orbit split Kramers doublets. A comparison of our results to the random 3D Ising magnets and other compounds where spin-orbit coupling is present indicate that the presence of an orbital degree of freedom, in combination with strong crystal field effects and well-separated $jrm{_{eff}}$ manifolds may play a key role in making the dynamics largely insensitive to disorder.



قيم البحث

اقرأ أيضاً

$alpha$-CoV$_{2}$O$_{6}$ consists of $j_{mathrm{eff}}={1 over 2}$ Ising spins located on an anisotropic triangular motif with magnetization plateaus in an applied field. We combine neutron diffraction with low temperature magnetization to investigate the magnetic periodicity in the vicinity of these plateaus. We find these steps to be characterized by metastable and spatially short-range ($xisim$ 10 $r{A}$) magnetic correlations with antiphase boundaries defining a local periodicity of $langle hat{T}^{2} rangle = uparrow downarrow$ to $langle hat{T}^{3} rangle = uparrow uparrow downarrow$, and $langle hat{T}^{4} rangle= uparrow uparrow downarrow downarrow$ or $uparrow uparrow uparrow downarrow$ spin arrangements. This shows the presence of spatially short range and metastable/hysteretic, commensurate magnetism in Ising magnetization steps.
Recent low temperature heat capacity (C$_P$) measurements on polycrystalline samples of the pyrochlore antiferromagnet Tb$_{2+x}$Ti$_{2-x}$O$_{7+delta}$ have shown a strong sensitivity to the precise Tb concentration $x$, with a large anomaly exhibit ed for $x sim 0.005$ at $T_C sim 0.5$ K and no such anomaly and corresponding phase transition for $x le 0$. We have grown single crystal samples of Tb$_{2+x}$Ti$_{2-x}$O$_{7+delta}$, with approximate composition $x=-0.001, +0.0042$, and $+0.0147$, where the $x=0.0042$ single crystal exhibits a large C$_P$ anomaly at $T_C$=0.45 K, but neither the $x=-0.001$ nor the $x=+0.0147$ single crystals display any such anomaly. We present new time-of-flight neutron scattering measurements on the $x=-0.001$ and the $x=+0.0147$ samples which show strong $left(frac{1}{2},frac{1}{2},frac{1}{2}right)$ quasi-Bragg peaks at low temperatures characteristic of short range antiferromagnetic spin ice (AFSI) order at zero magnetic field but only under field-cooled conditions, as was previously observed in our $x = 0.0042$ single crystal. These results show that the strong $left(frac{1}{2},frac{1}{2},frac{1}{2}right)$ quasi-Bragg peaks and gapped AFSI state at low temperatures under field cooled conditions are robust features of Tb$_2$Ti$_2$O$_7$, and are not correlated with the presence or absence of the C$_P$ anomaly and phase transition at low temperatures. Further, these results show that the ordered state giving rise to the C$_P$ anomaly is confined to $0 leq x leq 0.01$ for Tb$_{2+x}$Ti$_{2-x}$O$_{7+delta}$, and is not obviously connected with conventional order of magnetic dipole degrees of freedom.
We measured magnetization, specific heat, electron spin resonance, neutron diffraction, and inelastic neutron scattering of CrVMoO$_7$ powder. An antiferromagnetically ordered state appears below $T_{rm N} = 26.5 pm 0.8$ K. We consider that the proba ble spin model for CrVMoO$_7$ is an interacting antiferromagnetic spin-$frac{3}{2}$ dimer model. We evaluated the intradimer interaction $J$ to be $25 pm 1$ K and the effective interdimer interaction $J_{rm eff}$ to be $8.8 pm 1$ K. CrVMoO$_7$ is a rare spin dimer compound that shows an antiferromagnetically ordered state at atmospheric pressure and zero magnetic field. The magnitude of ordered moments is $0.73(2) mu_{rm B}$. It is much smaller than a classical value $sim 3 mu_{rm B}$. Longitudinal-mode magnetic excitations may be observable in single crystalline CrVMoO$_7$.
162 - M. Kofu , J.-H. Kim , S. Ji 2008
Using single crystal inelastic neutron scattering with and without application of an external magnetic field and powder neutron diffraction, we have characterized magnetic interactions in Ba$_3$Cr$_2$O$_8$. Even without field, we found that there exi st three singlet-to-triplet excitation modes in $(h,h,l)$ scattering plane. Our complete analysis shows that the three modes are due to spatially anisotropic interdimer interactions that are induced by local distortions of the tetrahedron of oxygens surrounding the Jahn-Teller active Cr$^{5+} (3d^1)$. The strong intradimer coupling of $J_0 = 2.38(2)$ meV and weak interdimer interactions ($|J_{rm inter}| leq 0.52(2)$ meV) makes Ba$_3$Cr$_2$O$_8$ a good model system for weakly-coupled $s = 1/2$ quantum spin dimers.
^139La nuclear magnetic resonance studies reveal markedly different magnetic properties of the two sites created by the charged domain wall formation in La_(5/3)Sr_(1/3)NiO_4. NMR is slow compared to neutron scattering; we observe a 30 K suppression in magnetic ordering temperature indicating glassy behavior. Applied magnetic field reorients the in-plane ordered moments with respect to the lattice, but the relative orientation of the spins amongst themselves is stiff and broadly distributed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا