ترغب بنشر مسار تعليمي؟ اضغط هنا

Metallic interfaces in a CaTiO$_3$/LaTiO$_3$ heterostructure

102   0   0.0 ( 0 )
 نشر من قبل Yanwei Cao
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Almost all oxide two-dimensional electron gases are formed in SrTiO$_3$-based heterostructures and the study of non-SrTiO$_3$ systems is extremely rare. Here, we report the realization of a two-dimensional electron gas in a CaTiO$_3$-based heterostructure, CaTiO$_3$/LaTiO$_3$, grown epitaxially layer-by-layer on a NdGaO$_3$ (110) substrate via pulsed laser deposition. The high quality of the crystal and electronic structures are characterized by in-situ reflection high-energy electron diffraction, X-ray diffraction, and X-ray photoemission spectroscopy. Measurement of electrical transport validates the formation of a two-dimensional electron gas in the CaTiO$_3$/LaTiO$_3$ superlattice. It is revealed the room-temperature carrier mobility in CaTiO$_3$/LaTiO$_3$ is nearly 3 times higher than in CaTiO$_3$/YTiO$_3$, demonstrating the effect of TiO$_6$ octahedral tilts and rotations on carrier mobility of two-dimensional electron gases. Due to doped CaTiO$_3$ being an A-site polar metal, our results provide a new route to design novel A-site two-dimensional polar metals.



قيم البحث

اقرأ أيضاً

Measurements of magneto-thermopower (S(H, T)) of interfacial delta doped LaTiO$_3$/SrTiO$_3$ (LTO/STO) heterostructure by an iso-structural antiferromagnetic perovskite LaCrO$_3$ are reported. The thermoelectric power of the pure LTO/STO interface at 300 K is $approx$ 118 $mu$V/K, but increases dramatically on $delta$-doping. The observed linear temperature dependence of S(T) over the temperature range 100 K to 300 K is in agreement with the theory of diffusion thermopower of a two-dimensional electron gas. The S(T) displays a distinct enhancement in the temperature range (T $<$ 100 K) where the sheet resistance shows a Kondo-type minimum. We attributed this maximum in S(T) to Kondo scattering of conduction electron by localized impurity spins at the interface. The suppression of S by a magnetic field, and the isotropic nature of the suppression in out-of-plane and in-plane field geometries further strengthen the Kondo model based interpretation of S(H, T).
In pursuit of creating cuprate-like electronic and orbital structures, artificial heterostructures based on LaNiO$_3$ have inspired a wealth of exciting experimental and theoretical results. However, to date there is a very limited experimental under standing of the electronic and orbital states emerging after interfacial charge-transfer and their connections to the modified band structure at the interface. Towards this goal, we have synthesized a prototypical superlattice composed of correlated metal LaNiO$_3$ and doped Mott insulator LaTiO$_{3+delta}$, and investigated its electronic structure by resonant X-ray absorption spectroscopy combined with X-ray photoemission spectroscopy, electrical transport and theory calculations. The heterostructure exhibits interfacial charge-transfer from Ti to Ni sites giving rise to an insulating ground state with orbital polarization and $e_textrm{g}$ orbital band splitting. Our findings demonstrate how the control over charge at the interface can be effectively used to create exotic electronic, orbital and spin states.
The polarized Raman spectra of stoichiometric LaTiO$_3$ (T$_N = 150$ K) were measured between 6 and 300 K. In contrast to earlier report on half-metallic LaTiO$_{3.02}$, neither strong background scattering, nor Fano shape of the Raman lines was obse rved. The high frequency phonon line at 655 cm$^{-1}$ exhibits anomalous softening below T$_N$: a signature for structural rearrangement. The assignment of the Raman lines was done by comparison to the calculations of lattice dynamics and the nature of structural changes upon magnetic ordering are discussed. The broad Raman band, which appears in the antiferromagnetic phase, is assigned to two-magnon scattering. The estimated superexchange constant $J = 15.4pm0.5$ meV is in excellent agreement with the result of neutron scattering studies.
At interfaces between oxide materials, lattice and electronic reconstructions always play important roles in exotic phenomena. In this study, the density functional theory and maximally localized Wannier functions are employed to investigate the (LaT iO$_3$)$_n$/(LaVO$_3$)$_n$ magnetic superlattices. The electron transfer from Ti$^{3+}$ to V$^{3+}$ is predicted, which violates the intuitive band alignment based on the electronic structures of LaTiO$_3$ and LaVO$_3$. Such unconventional charge transfer quenches the magnetism of LaTiO$_3$ layer mostly and leads to metal-insulator transition in the $n=1$ superlattice when the stacking orientation is altered. In addition, the compatibility among the polar structure, ferrimagnetism, and metallicity is predicted in the $n=2$ superlattice.
119 - Shuai Dong , Elbio Dagotto 2013
The emergence of magnetic reconstructions at the interfaces of oxide heterostructures are often explained via subtle modifications in the electronic densities, exchange couplings, or strain. Here an additional possible route for induced magnetism is studied in the context of the (LaNiO$_3$)$_n$/(LaMnO$_3$)$_n$ superlattices using a hybrid tight-binding model. In the LaNiO$_3$ region, the induced magnetizations decouple from the intensity of charge leakage from Mn to Ni, but originate from the spin-filtered quantum confinement present in these nanostructures. In general, the induced magnetization is the largest for the (111)-stacking and the weakest for the (001)-stacking superlattices, results compatible with the exchange bias effects reported by Gibert et al. Nat. Mater. 11, 195 (2012).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا