ﻻ يوجد ملخص باللغة العربية
The special computational challenges of simulating 3-D hydrodynamics in deep stellar interiors are discussed, and numerical algorithmic responses described. Results of recent simulations carried out at scale on the NSFs Blue Waters machine at the University of Illinois are presented, with a special focus on the computational challenges they address. Prospects for future work using GPU-accelerated nodes such as those on the DoEs new Summit machine at Oak Ridge National Laboratory are described, with a focus on numerical algorithmic accommodations that we believe will be necessary.
We present a general method for accelerating by more than an order of magnitude the convolution of pixelated functions on the sphere with a radially-symmetric kernel. Our method splits the kernel into a compact real-space component and a compact sphe
Moores Law and Dennard Scaling have guided the semiconductor industry for the past few decades. Recently, both laws have faced validity challenges as transistor sizes approach the practical limits of physics. We are interested in testing the validity
The LHCb experiment at CERN is undergoing an upgrade in preparation for the Run 3 data taking period of the LHC. As part of this upgrade the trigger is moving to a fully software implementation operating at the LHC bunch crossing rate. We present an
Much of the current focus in high-performance computing is on multi-threading, multi-computing, and graphics processing unit (GPU) computing. However, vectorization and non-parallel optimization techniques, which can often be employed additionally, a
There is growing interest in graph pattern mining (GPM) problems such as motif counting. GPM systems have been developed to provide unified interfaces for programming algorithms for these problems and for running them on parallel systems. However, ex