ﻻ يوجد ملخص باللغة العربية
In this paper we study a role of F-centers, hole centers and excitons in energy transfer in Eu-doped BaBrI crystals. Optical absorption spectra, thermally stimulated (TSL) and photostimulated (PSL) luminescence in wide temperature range 7-300 K are studied in undoped and doped with different concentrations of Eu ions BaBrI crystals. Based on experimental and calculated results two possible energy transfer processes from host to Eu$^{2+}$ ions are established.
The crystal growth procedure and luminescence properties of pure and Eu$^{2+}$-doped BaBrI and SrBrI crystals are reported. Emission and excitation spectra were recorded under ultraviolet and vacuum ultraviolet excitations. The energy of the first Eu
The work is necessitated by search for new materials to detect ionizing radiation. The rare-earth ions doped with ternary alkali earth-halide systems are promising scintillators showing high efficiency and energy resolution. Some aspects of crystal g
An accurate description of nonadiabatic energy relaxation is crucial for modeling atomistic dynamics at metal surfaces. Interfacial energy transfer due to electron-hole pair excitations coupled to motion of molecular adsorbates is often simulated by
A comparative first-principles study of possible bismuth-related centers in TlCl and CsI crystals is performed and the results of computer modeling are compared with the experimental data. The calculated spectral properties of the bismuth centers sug
Developing the field of quantum information science (QIS) hinges upon designing viable qubits, the smallest unit in quantum computing. One approach to creating qubits is introducing paramagnetic defects into semiconductors or insulators. This class o