ﻻ يوجد ملخص باللغة العربية
Despite the fact that the resolution of conventional contact/proximity lithography can reach feature sizes down to ~0.5-0.6 micrometers, the accurate control of the linewidth and uniformity becomes already very challenging for gratings with periods in the range of 1-2 {mu}m. This is particularly relevant for the exposure of large areas and wafers thinner than 300{mu}m. If the wafer or mask surface is not fully flat due to any kind of defects, such as bowing/warpage or remaining topography of the surface in case of overlay exposures, noticeable linewidth variations or complete failure of lithography step will occur. We utilized the newly developed Displacement Talbot lithography to pattern gratings with equal lines and spaces and periods in the range of 1.0 to 2.4 {mu}m. The exposures in this lithography process do not require contact between the mask and the wafer, which makes it essentially insensitive to surface planarity and enables exposures with very high linewidth uniformity on thin and even slightly deformed wafers. We demonstrated pattern transfer of such exposures into Si substrates by reactive ion etching using the Bosch process. An etching depth of 30 {mu}m or more for the whole range of periods was achieved, which corresponds to very high aspect ratios up to 60:1. The application of the fabricated gratings in phase contrast x-ray imaging is presented.
Ultrafast lasers have revolutionized material processing, opening a wealth of new applications in many areas of science. A recent technology that allows the cleaving of transparent materials via non-ablative processes is based on focusing and transla
A digital etching method was proposed to achieve excellent control of etching depth. The digital etching characteristics of p+ Si and Si0.7Ge0.3 using the combinations of HNO3 oxidation and BOE oxide removal processes were studied. Experiments showed
Although, poly(dimethylsiloxane) (PDMS) is a widely used material in numerous applications, such as micro- or nanofabrication, the method of its selective etching has not been known up to now. In this work authors present two methods of etching the p
Using the Greens dyad technique based on cuboidal meshing, we compute the electromagnetic field scattered by metal nanorods with high aspect ratio. We investigate the effect of the meshing shape on the numerical simulations. We observe that discretiz
In this work authors present for the first time how to apply the additive-free, cured PDMS as a negative tone resist material, demonstrate the creation of PDMS microstructures and test the solvent resistivity of the created microstructures. The PDMS