ﻻ يوجد ملخص باللغة العربية
Clinicians and researchers alike are increasingly interested in how best to personalize interventions. A dynamic treatment regimen (DTR) is a sequence of pre-specified decision rules which can be used to guide the delivery of a sequence of treatments or interventions that are tailored to the changing needs of the individual. The sequential multiple-assignment randomized trial (SMART) is a research tool which allows for the construction of effective DTRs. We derive easy-to-use formulae for computing the total sample size for three common two-stage SMART designs in which the primary aim is to compare mean end-of-study outcomes for two embedded DTRs which recommend different first-stage treatments. The formulae are derived in the context of a regression model which leverages information from a longitudinal outcome collected over the entire study. We show that the sample size formula for a SMART can be written as the product of the sample size formula for a standard two-arm randomized trial, a deflation factor that accounts for the increased statistical efficiency resulting from a longitudinal analysis, and an inflation factor that accounts for the design of a SMART. The SMART design inflation factor is typically a function of the anticipated probability of response to first-stage treatment. We review modeling and estimation for DTR effect analyses using a longitudinal outcome from a SMART, as well as the estimation of standard errors. We also present estimators for the covariance matrix for a variety of common working correlation structures. Methods are motivated using the ENGAGE study, a SMART aimed at developing a DTR for increasing motivation to attend treatments among alcohol- and cocaine-dependent patients.
A dynamic treatment regimen (DTR) is a pre-specified sequence of decision rules which maps baseline or time-varying measurements on an individual to a recommended intervention or set of interventions. Sequential multiple assignment randomized trials
In many health domains such as substance-use, outcomes are often counts with an excessive number of zeros (EZ) - count data having zero counts at a rate significantly higher than that expected of a standard count distribution (e.g., Poisson). However
A small n, sequential, multiple assignment, randomized trial (snSMART) is a small sample, two-stage design where participants receive up to two treatments sequentially, but the second treatment depends on response to the first treatment. The treatmen
Adaptive interventions (AIs) are increasingly becoming popular in medical and behavioral sciences. An AI is a sequence of individualized intervention options that specify for whom and under what conditions different intervention options should be off
Knockoffs provide a general framework for controlling the false discovery rate when performing variable selection. Much of the Knockoffs literature focuses on theoretical challenges and we recognize a need for bringing some of the current ideas into