ﻻ يوجد ملخص باللغة العربية
In 1971, Kac and Weisfeiler made two influential conjectures describing the dimensions of simple modules of a restricted Lie algebra $mathfrak{g}$. The first predicts the maximal dimension of simple $mathfrak{g}$-modules and in this paper we apply the Lefschetz principle and classical techniques from Lie theory to prove this conjecture for all restricted Lie subalgebras of $mathfrak{gl}_n(k)$ whenever $k$ is an algebraically closed field of characteristic $p gg n$. As a consequence we deduce that the conjecture holds for the the Lie algebra of a group scheme when specialised to an algebraically closed field of almost any characteristic. In the appendix to this paper, written by Akaki Tikaradze, a short proof of the first Kac--Weisfeiler conjecture is given for the Lie algebra of group scheme over a finitely generated ring $R subseteq mathbb{C}$, after base change to a field of large positive characteristic.
We present a proof of the compositional shuffle conjecture, which generalizes the famous shuffle conjecture for the character of the diagonal coinvariant algebra. We first formulate the combinatorial side of the conjecture in terms of certain operato
Auslander-Reiten conjecture, which says that an Artin algebra does not have any non-projective generator with vanishing self-extensions in all positive degrees, is shown to be invariant under certain singular equivalences induced by adjoint pairs, wh
In this paper we prove the Aubert-Baum-Plymen-Solleveld conjecture for the split classical groups and establish the connection with the Langlands correspondence. To do this, we review the notion of cuspidality for enhanced Langlands parameters and al
We prove that the `Upper Matching Conjecture of Friedland, Krop, and Markstrom and the analogous conjecture of Kahn for independent sets in regular graphs hold for all large enough graphs as a function of the degree. That is, for every $d$ and every
A typical decomposition question asks whether the edges of some graph $G$ can be partitioned into disjoint copies of another graph $H$. One of the oldest and best known conjectures in this area, posed by Ringel in 1963, concerns the decomposition of