ترغب بنشر مسار تعليمي؟ اضغط هنا

On the squeezing function and Fridman invariants

140   0   0.0 ( 0 )
 نشر من قبل Nikolai Nikolov
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For a domain $D subset mathbb C^n$, the relationship between the squeezing function and the Fridman invariants is clarified. Furthermore, localization properties of these functions are obtained. As applications, some known results concerning their boundary behavior are extended.



قيم البحث

اقرأ أيضاً

128 - Kang-Tae Kim , Liyou Zhang 2013
We describe the boundary behaviors of the squeezing functions for all bounded convex domains in $mathbb{C}^n$ and bounded domains with a $C^2$ strongly convex boundary point.
In the present article, we define squeezing function corresponding to polydisk and study its properties. We investigate relationship between squeezing fuction and squeezing function corresponding to polydisk.
J. E. Fornaess has posed the question whether the boundary point of smoothly bounded pseudoconvex domain is strictly pseudoconvex, if the asymptotic limit of the squeezing function is 1. The purpose of this paper is to give an affirmative answer when the domain is in C^2 with smooth boundary of finite type in the sense of DAngelo.
We introduce the notion of squeezing function corresponding to $d$-balanced domains motivated by the concept of generalized squeezing function given by Rong and Yang. In this work we study some of its properties and its relation with Fridman invariant.
In the spirit of Kobayashis applications of methods of invariant metrics to questions of projective geometry, we introduce a projective analogue of the complex squeezing function. Using Frankels work, we prove that for convex domains it stays uniform ly bounded from below. In the case of strongly convex domains, we show that it tends to 1 at the boundary. This is applied to get a new proof of a projective analogue of the Wong-Rosay theorem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا