ترغب بنشر مسار تعليمي؟ اضغط هنا

Parabolic Jets from the Spinning Black Hole in M87

58   0   0.0 ( 0 )
 نشر من قبل Masanori Nakamura
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The M87 jet is extensively examined by utilizing general relativistic magnetohydrodynamic (GRMHD) simulations as well as the steady axisymmetric force-free electrodynamic (FFE) solution. Quasi-steady funnel jets are obtained in GRMHD simulations up to the scale of $sim 100$ gravitational radius ($r_{rm g}$) for various black hole (BH) spins. As is known, the funnel edge is approximately determined by the following equipartitions; i) the magnetic and rest-mass energy densities and ii) the gas and magnetic pressures. Our numerical results give an additional factor that they follow the outermost parabolic streamline of the FFE solution, which is anchored to the event horizon on the equatorial plane. We also identify the matter dominated, non-relativistic corona/wind play a dynamical role in shaping the funnel jet into the parabolic geometry. We confirm a quantitative overlap between the outermost parabolic streamline of the FFE jet and the edge of jet sheath in VLBI observations at $sim 10^{1}$-$10^{5} , r_{rm g}$, suggesting that the M87 jet is likely powered by the spinning BH. Our GRMHD simulations also indicate a lateral stratification of the bulk acceleration (i.e., the spine-sheath structure) as well as an emergence of knotty superluminal features. The spin characterizes the location of the jet stagnation surface inside the funnel. We suggest that the limb-brightened feature could be associated with the nature of the BH-driven jet, if the Doppler beaming is a dominant factor. Our findings can be examined with (sub-)mm VLBI observations, giving a clue for the origin of the M87 jet.

قيم البحث

اقرأ أيضاً

It has for long been an article of faith among astrophysicists that black hole spin energy is responsible for powering the relativistic jets seen in accreting black holes. Two recent advances have strengthened the case. First, numerical general relat ivistic magnetohydrodynamic simulations of accreting spinning black holes show that relativistic jets form spontaneously. In at least some cases, there is unambiguous evidence that much of the jet energy comes from the black hole, not the disk. Second, spin parameters of a number of accreting stellar-mass black holes have been measured. For ballistic jets from these systems, it is found that the radio luminosity of the jet correlates with the spin of the black hole. This suggests a causal relationship between black hole spin and jet power, presumably due to a generalized Penrose process.
We perform magnetohydrodynamic simulations of accreting, equal-mass binary black holes in full general relativity focusing on the impact of black hole spin on the dynamical formation and evolution of minidisks. We find that during the late inspiral t he sizes of minidisks are primarily determined by the interplay between the tidal field and the effective innermost stable orbit around each black hole. Our calculations support that a minidisk forms when the Hill sphere around each black hole is significantly larger than the black holes effective innermost stable orbit. As the binary inspirals, the radius of the Hill sphere decreases, and minidisk sconsequently shrink in size. As a result, electromagnetic signatures associated with minidisks may be expected to gradually disappear prior to merger when there are no more stable orbits within the Hill sphere. In particular, a gradual disappearance of a hard electromagnetic component in the spectrum of such systems could provide a characteristic signature of merging black hole binaries. For a binary of given total mass, the timescale to minidisk evaporation should therefore depend on the black hole spins and the mass ratio. We also demonstrate that accreting binary black holes with spin have a higher efficiency for converting accretion power to jet luminosity. These results could provide new ways to estimate black hole spins in the future.
New long-term Very Long Baseline Array observations of the well-known jet in the M87 radio galaxy at 43 GHz show that the jet experiences a sideways shift with an approximately 8-10 yr quasi-periodicity. Such jet wobbling can be indicative of a relat ivistic Lense-Thirring precession resulting from a tilted accretion disc. The wobbling period together with up-to-date kinematic data on jet rotation opens up the possibility for estimating angular momentum of the central supermassive black hole. In the case of a test-particle precession, the specific angular momentum is $J/Mc=(2.7pm1.5)times10^{14}$ cm, implying moderate dimensionless spin parameters $a=0.5pm0.3$ and $0.31pm0.17$ for controversial gas-dynamic and stellar-dynamic black hole masses. However, in the case of a solid-body-like precession, the spin parameter is much smaller for both masses, $0.15pm0.05$. Rejecting this value on the basis of other independent spin estimations requires the existence of a magnetically arrested disc in M87.
Several active galactic nuclei and microquasars are observed to eject plasmoids that move at relativistic speeds. We envisage the plasmoids as pre-existing current carrying magnetic flux ropes that were initially anchored in the accretion disk-corona . The plasmoids are ejected outwards via a mechanism called the toroidal instability (TI). The TI, which was originally explored in the context of laboratory tokamak plasmas, has been very successful in explaining coronal mass ejections from the Sun. Our model predictions for plasmoid trajectories compare favorably with a representative set of multi-epoch observations of radio emitting knots from the radio galaxy 3C120, which were preceded by dips in Xray intensity.
Approximately 10% of active galactic nuclei exhibit relativistic jets, which are powered by accretion of matter onto super massive black holes. While the measured width profiles of such jets on large scales agree with theories of magnetic collimation , predicted structure on accretion disk scales at the jet launch point has not been detected. We report radio interferometry observations at 1.3mm wavelength of the elliptical galaxy M87 that spatially resolve the base of the jet in this source. The derived size of 5.5 +/- 0.4 Schwarzschild radii is significantly smaller than the innermost edge of a retrograde accretion disk, suggesting that the M87 jet is powered by an accretion disk in a prograde orbit around a spinning black hole.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا