ﻻ يوجد ملخص باللغة العربية
Supersymmetry plays prominent roles in the study of quantum field theory and in many proposals for potential new physics beyond the standard model, while lattice field theory provides a non-perturbative regularization suitable for strongly interacting systems. Lattice investigations of supersymmetric field theories are currently making significant progress, though many challenges remain to be overcome. In this brief overview I discuss particularly notable progress in three areas: supersymmetric Yang--Mills (SYM) theories in fewer than four dimensions, as well as both minimal N=1 SYM and maximal N=4 SYM in four dimensions. I also highlight super-QCD and sign problems as prominent challenges that will be important to address in future work.
We propose an unconventional formulation of lattice field theories which is quite general, although originally motivated by the quest of exact lattice supersymmetry. Two long standing problems have a solution in this context: 1) Each degree of freedo
We propose a lattice field theory formulation which overcomes some fundamental difficulties in realizing exact supersymmetry on the lattice. The Leibniz rule for the difference operator can be recovered by defining a new product on the lattice, the s
We construct a lattice model for two-dimensional N=(2,2) supersymmetric QCD (SQCD), with the matter multiplets belonging to the fundamental or anti-fundamental representation of the gauge group U(N) or SU(N). The construction is based on the topologi
We propose a new lattice superfield formalism in momentum representation which accommodates species doublers of the lattice fermions and their bosonic counterparts as super multiplets. We explicitly show that one dimensional N=2 model with interactio
In this paper, we introduce the overlap Dirac operator, which satisfies the Ginsparg-Wilson relation, to the matter sector of two-dimensional N=(2,2) lattice supersymmetric QCD (SQCD) with preserving one of the supercharges. It realizes the exact chi