ﻻ يوجد ملخص باللغة العربية
Timing analysis of PSR J1705$-$1906 using data from Nanshan 25-m and Parkes 64-m radio telescopes, which span over fourteen years, shows that the pulsar exhibits significant proper motion, and rotation instability. We updated the astrometry parameters and the spin parameters of the pulsar. In order to minimize the effect of timing irregularities on measuring its position, we employ the Cholesky method to analyse the timing noise. We obtain the proper motion of $-$77(3) ,mas,yr$^{-1}$ in right ascension and $-$38(29) ,mas,yr$^{-1}$ in declination. The power spectrum of timing noise is analyzed for the first time, which gives the spectral exponent $alpha=-5.2$ for the power-law model indicating that the fluctuations in spin frequency and spin-down rate dominate the red noise. We detect two small glitches from this pulsar with fractional jump in spin frequency of $Delta u/ usim2.9times10^{-10}$ around MJD~55199 and $Delta u/ usim2.7times10^{-10}$ around MJD~55953. Investigations of pulse profile at different time segments suggest no significant changes in the pulse profiles around the two glitches.
Pulsars show two classes of rotational irregularities that can be used to understand neutron-star interiors and magnetospheres: glitches and timing noise. Here we present an analysis of the Vela pulsar spanning nearly 21 yr of observation and includi
We present analysis of the timing noise in PSR J1733-3716, which combines data from Parkes 64-m radio telescope and nearly 15 years of timing data obtained from the Nanshan 25-m radio telescope. The variations in the spin frequency and frequency deri
The double pulsar (PSR J0737-3039A/B) provides some of the most stringent tests of general relativity (GR) and its alternatives. The success of this system in tests of GR is largely due to the high-precision, long-term timing of its recycled-pulsar m
We present relativistic analyses of 9257 measurements of times-of-arrival from the first binary pulsar, PSR B1913+16, acquired over the last thirty-five years. The determination of the Keplerian orbital elements plus two relativistic terms completely
The frequency dependence of radio pulse arrival times provides a probe of structures in the intervening media. Demorest et al. 2013 was the first to show a short-term (~100-200 days) reduction in the electron content along the line of sight to PSR J1