ﻻ يوجد ملخص باللغة العربية
The temperature dependence of the hydrodynamic boundary condition between a PDMS melt and two different non-attractive surfaces made of either an OTS (octadecyltrichlorosilane) self-assembled monolayer (SAM) or a grafted layer of short PDMS chains has been characterized. A slip length proportional to the fluid viscosity is observed on both surfaces. The slip temperature dependence is deeply influenced by the surfaces. The viscous stress exerted by the polymer liquid on the surface is observed to follow exactly the same temperature dependences as the friction stress of a cross-linked elastomer sliding on the same surfaces. Far above the glass transition temperature, these observations are rationalized in the framework of a molecular model based on activation energies: increase or decrease of the slip length with increasing temperatures can be observed depending on how the activation energy of the bulk viscosity compares to that of the interfacial Naviers friction coefficient.
Hydrodynamic slip of a liquid at a solid surface represents a fundamental phenomenon in fluid dynamics that governs liquid transport at small scales. For polymeric liquids, de Gennes predicted that the Navier boundary condition together with the theo
It is commonly accepted that in concentrated solutions or melts high-molecular weight polymers display random-walk conformational properties without long-range correlations between subsequent bonds. This absence of memory means, for instance, that th
We present a numerical study of the slip link model introduced by Likhtman for describing the dy- namics of dense polymer melts. After reviewing the technical aspects associated with the implemen- tation of the model, we extend previous work in sever
The morphology of an elastic strip subject to vertical compressive stress on a frictional rigid substrate is investigated by a combination of theory and experiment. We find a rich variety of morphologies, which -when the bending elasticity dominates
We present an extensive set of simulation results for the stress relaxation in equilibrium and step-strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relaxation modulus, $G(t)$, into the plateau regime