ﻻ يوجد ملخص باللغة العربية
The upcoming TESS mission will detect thousands of candidate transiting exoplanets. Those candidates require extensive follow-up observations to distinguish genuine planets from false positives, and to resolve the physical properties of the planets and their host stars. While the TESS mission is funded to conduct those observations for the smallest and most Earth-size candidate systems, the large number of additional candidates will have to be vetted and measured by the rest of the astronomical community. To realize fully the scientific potential of the TESS mission, we must ensure that there are adequate observing resources for the community to examine the TESS transit candidates and find the best candidates for detailed characterization. The primary purpose of this report is to describe the follow-up observational needs for planetary discoveries made by transit surveys - in particular TESS. However, many of the same types of observations are necessary for the other discovery techniques as well, particularly with regards to the characterization of the host stars and the planetary orbits. It is worth acknowledging that while a planet discovery may be a one-time event, the deeper understanding of a planetary system is an ongoing process, requiring observations with better precision over longer time spans.
This is a joint summary of the reports from the three Astrophysics Program Analysis Groups (PAGs) in response to the Planning for the 2020 Decadal Survey charge given by the Astrophysics Division Director Paul Hertz. This joint executive summary cont
[Abridged] The Study Analysis Group 8 of the NASA Exoplanet Analysis Group was convened to assess the current capabilities and the future potential of the precise radial velocity (PRV) method to advance the NASA goal to search for planetary bodies an
The NASA Exoplanet Program Analysis Group (ExoPAG) has undertaken an effort to define mission Level 1 requirements for exoplanet direct detection missions at a range of sizes. This report outlines the science goals and requirements for the next exopl
Precise mass measurements of exoplanets discovered by the direct imaging or transit technique are required to determine planet bulk properties and potential habitability. Furthermore, it is generally acknowledged that, for the foreseeable future, the
The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of di