ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotic behavior of orbits of holomorphic semigroups

78   0   0.0 ( 0 )
 نشر من قبل Filippo Bracci
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $(phi_t)$ be a holomorphic semigroup of the unit disc (i.e., the flow of a semicomplete holomorphic vector field) without fixed points in the unit disc and let $Omega$ be the starlike at infinity domain image of the Koenigs function of $(phi_t)$. In this paper we completely characterize the type of convergence of the orbits of $(phi_t)$ to the Denjoy-Wolff point in terms of the shape of $Omega$. In particular we prove that the convergence is non-tangential if and only if the domain $Omega$ is `quasi-symmetric with respect to vertical axes. We also prove that such conditions are equivalent to the curve $[0,infty) i tmapsto phi_t(z)$ being a quasi-geodesic in the sense of Gromov. Also, we characterize the tangential convergence in terms of the shape of $Omega$.



قيم البحث

اقرأ أيضاً

169 - Mark Elin , David Shoikhet 2011
In this paper we give some quantative characteristics of boundary asymptotic behavior of semigroups of holomorphic self-mappings of the unit disk including the limit curvature of their trajectories at the boundary Denjoy--Wolff point. This enable us to establish an asymptotic rigidity property for semigroups of parabolic type.
145 - Filippo Bracci 2019
We introduce three quantities related to orbits of non-elliptic continuous semigroups of holomorphic self-maps of the unit disc, the total speed, the orthogonal speed and the tangential speed and show how they are related and what can be inferred from those.
We show that the orthogonal speed of semigroups of holomorphic self-maps of the unit disc is asymptotically monotone in most cases. Such a theorem allows to generalize previous results of D. Betsakos and D. Betsakos, M. D. Contreras and S. Diaz-Madri gal and to obtain new estimates for the rate of convergence of orbits of semigroups.
Let $(phi_t)$ be a semigroup of holomorphic self-maps of~$mathbb D$. In this note, we use an abstract approach to define the Konigs function of $(phi_t)$ and holomorphic models and show how to deduce the existence and properties of the infinitesimal generator of $(phi_t)$ from this construction.
We construct a complete proper holomorphic embedding from any strictly pseudoconvex domain with $mathcal{C}^2$-boundary in $mathbb{C}^n$ into the unit ball of $mathbb{C}^N$, for $N$ large enough, thereby answering a question of Alarcon and Forstneric.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا