ﻻ يوجد ملخص باللغة العربية
We report measurements on the high temperature ionic and low temperature electronic properties of the 3D topological insulator Bi$_2$Te$_2$Se using ion-implanted $^8$Li $beta$-detected nuclear magnetic relaxation and resonance. With implantation energies in the range 5-28 keV, the probes penetrate beyond the expected range of the topological surface state, but are still within 250 nm of the surface. At temperatures above ~150 K, spin-lattice relaxation measurements reveal isolated $^8$Li$^{+}$ diffusion with an activation energy $E_{A} = 0.185(8)$ eV and attempt frequency $tau_{0}^{-1} = 8(3) times 10^{11}$ s$^{-1}$ for atomic site-to-site hopping. At lower temperature, we find a linear Korringa-like relaxation mechanism with a field dependent slope and intercept, which is accompanied by an anomalous field dependence to the resonance shift. We suggest that these may be related to a strong contribution from orbital currents or the magnetic freezeout of charge carriers in this heavily compensated semiconductor, but that conventional theories are unable to account for the extent of the field dependence. Conventional NMR of the stable host nuclei may help elucidate their origin.
We report $beta$-detected nuclear magnetic resonance ($beta$-NMR) measurements in Bi$_{2}$Se$_{3}$:Ca (BSC) and Bi$_{2}$Te$_{3}$:Mn (BTM) single crystals using $^{8}$Li$^{+}$ implanted to depths on the order of 100 nm. Above $sim 200$ K, spin-lattice
The intrinsic magnetic topological insulators MnBi$_2$X$_4$ (X = Se, Te) are promising candidates in realizing various novel topological states related to symmetry breaking by magnetic order. Although much progress had been made in MnBi$_2$Te$_4$, th
We have studied a mosaic of 1T-CrSe$_2$ single crystals using $beta$-detected nuclear magnetic resonance of $^{8}$Li from 4 to 300 K. We identify two broad resonances that show no evidence of quadrupolar splitting, indicating two magnetically distinc
Nuclear magnetic resonance (NMR) was recently shown to measure the bulk band inversion of Bi$_2$Se$_3$ through changes in the $^{209}$Bi nuclear quadrupole interaction, and the corresponding tensor of the local electric field gradient was found to fo
Quantum states of matter combining non-trivial topology and magnetism attract a lot of attention nowadays; the special focus is on magnetic topological insulators (MTIs) featuring quantum anomalous Hall and axion insulator phases. Feasibility of many