ترغب بنشر مسار تعليمي؟ اضغط هنا

Using Intuitionistic Fuzzy Set for Anomaly Detection of Network Traffic from Flow Interaction

73   0   0.0 ( 0 )
 نشر من قبل Jinfa Wang
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a method to detect anomalies in a time series of flow interaction patterns. There are many existing methods for anomaly detection in network traffic, such as number of packets. However, there is non established method detecting anomalies in a time series of flow interaction patterns that can be represented as complex network. Firstly, based on proposed multivariate flow similarity method on temporal locality, a complex network model (MFS-TL) is constructed to describe the interactive behaviors of traffic flows. Having analyzed the relationships between MFS-TL characteristics, temporal locality window and multivariate flow similarity critical threshold, an approach for parameter determination is established. Having observed the evolution of MFS-TL characteristics, three non-deterministic correlations are defined for network states (i.e. normal or abnormal). Furthermore, intuitionistic fuzzy set (IFS) is introduced to quantify three non-deterministic correlations, and then a anomaly detection method is put forward for single characteristic sequence. To build an objective IFS, we design a Gaussian distribution-based membership function with a variable hesitation degree. To determine the mapping of IFSs clustering intervals to network states, a distinction index is developed. Then, an IFS ensemble method (IFSE-AD) is proposed to eliminate the impacts of the inconsistent about MFS-TL characteristic to network state and improve detection performance. Finally, we carried out extensive experiments on several network traffic datasets for anomaly detection, and the results demonstrate the superiority of IFSE-AD to state-of-the-art approaches, validating the effectiveness of our method.



قيم البحث

اقرأ أيضاً

166 - Jinfa Wang , , Xiao Liu 2018
Ensemble learning for anomaly detection of data structured into complex network has been barely studied due to the inconsistent performance of complex network characteristics and lack of inherent objective function. In this paper, we propose the IFSA D, a new two-phase ensemble method for anomaly detection based on intuitionistic fuzzy set, and applies it to the abnormal behavior detection problem in temporal complex networks. First, it constructs the intuitionistic fuzzy set of single network characteristic which quantifies the degree of membership, non-membership and hesitation of each of network characteristic to the defined linguistic variables so that makes the unuseful or noise characteristics become part of the detection. To build an objective intuitionistic fuzzy relationship, we propose an Gaussian distribution-based membership function which gives a variable hesitation degree. Then, for the fuzzification of multiple network characteristics, the intuitionistic fuzzy weighted geometric operator is adopted to fuse multiple IFSs and to avoid the inconsistent of multiple characteristics. Finally, the score function and precision function are used to sort the fused IFS. Finally we carried out extensive experiments on several complex network datasets for anomaly detection, and the results demonstrate the superiority of our method to state-of-the-art approaches, validating the effectiveness of our method.
This paper proposes to develop a network phenotyping mechanism based on network resource usage analysis and identify abnormal network traffic. The network phenotyping may use different metrics in the cyber physical system (CPS), including resource an d network usage monitoring, physical state estimation. The set of devices will collectively decide a holistic view of the entire system through advanced image processing and machine learning methods. In this paper, we choose the network traffic pattern as a study case to demonstrate the effectiveness of the proposed method, while the methodology may similarly apply to classification and anomaly detection based on other resource metrics. We apply image processing and machine learning on the network resource usage to extract and recognize communication patterns. The phenotype method is experimented on four real-world decentralized applications. With proper length of sampled continuous network resource usage, the overall recognition accuracy is about 99%. Additionally, the recognition error is used to detect the anomaly network traffic. We simulate the anomaly network resource usage that equals to 10%, 20% and 30% of the normal network resource usage. The experiment results show the proposed anomaly detection method is efficient in detecting each intensity of anomaly network resource usage.
In this paper we prove that Neutrosophic Set (NS) is an extension of Intuitionistic Fuzzy Set (IFS) no matter if the sum of single-valued neutrosophic components is < 1, or > 1, or = 1. For the case when the sum of components is 1 (as in IFS), after applying the neutrosophic aggregation operators one gets a different result from that of applying the intuitionistic fuzzy operators, since the intuitionistic fuzzy operators ignore the indeterminacy, while the neutrosophic aggregation operators take into consideration the indeterminacy at the same level as truth-membership and falsehood-nonmembership are taken. NS is also more flexible and effective because it handles, besides independent components, also partially independent and partially dependent components, while IFS cannot deal with these. Since there are many types of indeterminacies in our world, we can construct different approaches to various neutrosophic concepts. Also, Regret Theory, Grey System Theory, and Three-Ways Decision are particular cases of Neutrosophication and of Neutrosophic Probability. We extended for the first time the Three-Ways Decision to n-Ways Decision, and the Spherical Fuzzy Set to n-HyperSpherical Fuzzy Set and to n-HyperSpherical Neutrosophic Set.
A growing issue in the modern cyberspace world is the direct identification of malicious activity over network connections. The boom of the machine learning industry in the past few years has led to the increasing usage of machine learning technologi es, which are especially prevalent in the network intrusion detection research community. When utilizing these fairly contemporary techniques, the community has realized that datasets are pivotal for identifying malicious packets and connections, particularly ones associated with information concerning labeling in order to construct learning models. However, there exists a shortage of publicly available, relevant datasets to researchers in the network intrusion detection community. Thus, in this paper, we introduce a method to construct labeled flow data by combining the packet meta-information with IDS logs to infer labels for intrusion detection research. Specifically, we designed a NetFlow-compatible format due to the capability of a a large body of network devices, such as routers and switches, to export NetFlow records from raw traffic. In doing so, the introduced method at hand would aid researchers to access relevant network flow datasets along with label information.
The problem of detecting anomalies in time series from network measurements has been widely studied and is a topic of fundamental importance. Many anomaly detection methods are based on packet inspection collected at the network core routers, with co nsequent disadvantages in terms of computational cost and privacy. We propose an alternative method in which packet header inspection is not needed. The method is based on the extraction of a normal subspace obtained by the tensor decomposition technique considering the correlation between different metrics. We propose a new approach for online tensor decomposition where changes in the normal subspace can be tracked efficiently. Another advantage of our proposal is the interpretability of the obtained models. The flexibility of the method is illustrated by applying it to two distinct examples, both using actual data collected on residential routers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا