ترغب بنشر مسار تعليمي؟ اضغط هنا

Science with an ngVLA: Deuteration in starless and prestellar cores

227   0   0.0 ( 0 )
 نشر من قبل Rachel Friesen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In dense starless and protostellar cores, the relative abundance of deuterated species to their non-deuterated counterparts can become orders of magnitude greater than in the local interstellar medium. This enhancement proceeds through multiple pathways in the gas phase and on dust grains, where the chemistry is strongly dependent on the physical conditions. In this Chapter, we discuss how sensitive, high resolution observations with the ngVLA of emission from deuterated molecules will trace both the dense gas structure and kinematics on the compact physical scales required to track the gravitational collapse of star-forming cores and the subsequent formation of young protostars and circumstellar accretion regions. Simultaneously, such observations will play a critical role in tracing the chemical history throughout the various phases of star and planet formation. Many low-J transitions of key deuterated species, along with their undeuterated counterparts, lie within the 60-110 GHz frequency window, the lower end of which is largely unavailable with current facilities and instrumentation. The combination of sensitivity and angular resolution provided only by the ngVLA will enable unparalleled detailed studies of the physics and chemistry of the earliest stages of star formation.



قيم البحث

اقرأ أيضاً

The science case and associated science requirements for a next-generation Very Large Array (ngVLA) are described, highlighting the five key science goals developed out of a community-driven vision of the highest scientific priorities in the next dec ade. Building on the superb cm observing conditions and existing infrastructure of the VLA site in the U.S. Southwest, the ngVLA is envisaged to be an interferometric array with more than 10 times the sensitivity and spatial resolution of the current VLA and ALMA, operating at frequencies spanning $sim1.2 - 116$,GHz with extended baselines reaching across North America. The ngVLA will be optimized for observations at wavelengths between the exquisite performance of ALMA at submm wavelengths, and the future SKA-1 at decimeter to meter wavelengths, thus lending itself to be highly complementary with these facilities. The ngVLA will be the only facility in the world that can tackle a broad range of outstanding scientific questions in modern astronomy by simultaneously delivering the capability to: (1) unveil the formation of Solar System analogues; (2) probe the initial conditions for planetary systems and life with astrochemistry; (3) characterize the assembly, structure, and evolution of galaxies from the first billion years to the present; (4) use pulsars in the Galactic center as fundamental tests of gravity; and (5) understand the formation and evolution of stellar and supermassive blackholes in the era of multi-messenger astronomy.
81 - Justin D. Linford , 2018
Observations with modern radio telescopes have revealed that classical novae are far from the simple, spherically symmetric events they were once assumed to be. It is now understood that novae provide excellent laboratories to study several astrophys ical properties including binary interactions, stellar outflows, and shock physics. The ngVLA will provide unprecedented opportunities to study these events. It will enable us to observe more distant and fainter novae than we can today. It will allow us to simultaneously resolve both the thermal and non-thermal components in the ejecta. Finally, monitoring novae with the ngVLA will reveal the evolution of the ejecta in better detail than is possible with any current instrument.
The next-generation Very Large Array (ngVLA) is an astronomical observatory planned to operate at centimeter wavelengths (25 to 0.26 centimeters, corresponding to a frequency range extending from 1.2 to 116 GHz). The observatory will be a synthesis r adio telescope constituted of approximately 244 reflector antennas each of 18 meters diameter, and 19 reflector antennas each of 6 meters diameter, operating in a phased or interferometric mode. We provide a technical overview of the Reference Design of the ngVLA. This Reference Design forms a baseline for a technical readiness assessment and the construction and operations cost estimate of the ngVLA. The concepts for major system elements such as the antenna, receiving electronics, and central signal processing are presented.
Planets assemble in the midplanes of protoplanetary disks. The compositions of dust and gas in the disk midplane region determine the compositions of nascent planets, including their chemical hospitality to life. In this context, the distributions of volatile organic material across the planet and comet forming zones is of special interest. These are difficult to access in the disk midplane at IR and even millimeter wavelengths due to dust opacity, which can veil the midplane, low intrinsic molecular abundances due to efficient freeze-out, and, in the case of mid-sized organics, a mismatch between expected excitation temperatures and accessible line upper energy levels. At ngVLA wavelengths, the dust is optically thin, enabling observations into the planet forming disk midplane. ngVLA also has the requisite sensitivity. Using TW Hya as a case study, we show that ngVLA will be able to map out the distributions of diagnostic organics, such as CH3CN, in nearby protoplanetary disks.
Energy stored in the magnetic field in the solar atmosphere above active regions is a key driver of all solar activity (e.g., solar flares and coronal mass ejections), some of which can affect life on Earth. Radio observations provide a unique diagno stic of the coronal magnetic fields that make them a critical tool for the study of these phenomena, using the technique of broadband radio imaging spectropolarimetry. Observations with the ngVLA will provide unique observations of coronal magnetic fields and their evolution, key inputs and constraints for MHD numerical models of the solar atmosphere and eruptive processes, and a key link between lower layers of the solar atmosphere and the heliosphere. In doing so they will also provide practical research to operations guidance for space weather forecasting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا