ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarized neutron channeling in weakly magnetic films

247   0   0.0 ( 0 )
 نشر من قبل Sergey Kozhevnikov
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a new sensitive method for the investigation of weakly magnetic films placed inside a tri-layer planar waveguide. Polarized neutrons tunnel into the waveguide through the surface, channel along the layers and are emitted from the end face as a narrow and slightly divergent microbeam. Polarization analysis permits to detect very small magnetization in the order of a few 10 Gauss. The magnetic film containing the rare-earth element Tb was investigated using both fixed wavelength and time-of-flight polarized neutron reflectometers. The experimental results are presented and discussed.

قيم البحث

اقرأ أيضاً

278 - W.-T. Lee 2002
Polarized neutron reflectometry (PNR) has long been applied to measure the magnetic depth profile of thin films. In recent years, interest has increased in observing lateral magnetic structures in a film. While magnetic arrays patterned by lithograph y and submicron-sized magnetic domains in thin films often give rise to off-specular reflections, micron-sized ferromagnetic domains on a thin film produce few off-specular reflections and the domain distribution information is contained within the specular reflection. In this paper, we will first present some preliminary results of off-specular reflectivity from arrays of micron-sized permalloy rectangular bars. We will then use specular reflections to study the domain dispersion of an exchange-biased Co/CoO bilayer at different locations of the hysteresis loop.
We have used complementary neutron and x-ray reflectivity techniques to examine the depth profiles of a series of as-grown and annealed Ga[1-x]Mn[x]As thin films. A magnetization gradient is observed for two as-grown films and originates from a nonun iformity of Mn at interstitial sites, and not from local variations in Mn at Ga sites. Furthermore, we see that the depth-dependent magnetization can vary drastically among as-grown Ga[1-x]Mn[x]As films despite being deposited under seemingly similar conditions. These results imply that the depth profile of interstitial Mn is dependent not only on annealing, but is also extremely sensitive to initial growth conditions. We observe that annealing improves the magnetization by producing a surface layer that is rich in Mn and O, indicating that the interstitial Mn migrates to the surface. Finally, we expand upon our previous neutron reflectivity study of Ga[1-x]Mn[x]As, by showing how the depth profile of the chemical composition at the surface and through the film thickness is directly responsible for the complex magnetization profiles observed in both as-grown and annealed films.
The presence of a large applied magnetic field removes the degeneracy of the vacuum energy states for spin-up and spin-down neutrons. For polarized neutron reflectometry, this must be included in the reference potential energy of the Schrodinger equa tion that is used to calculate the expected scattering from a magnetic layered structure. For samples with magnetization that is purely parallel or antiparallel to the applied field which defines the quantization axis, there is no mixing of the spin states (no spin-flip scattering) and so this additional potential is constant throughout the scattering region. When there is non-collinear magnetization in the sample however, there will be significant scattering from one spin state into the other and the reference potentials will differ between the incoming and outgoing wavefunctions, changing the angle and intensities of the scattering. The theory of the scattering and recommended experimental practices for this type of measurement are presented, as well as an example measurement.
We present a combination of ab initio calculations, magnetic Compton scattering and polarized neutron experiments, which elucidate the density distribution of unpaired electrons in the kagome staircase system Co3V2O8. Ab initio wave functions were us ed to calculate the spin densities in real and momentum space, which show good agreement with the respective experiments. It has been found that the spin polarized orbitals are equally distributed between the t2g and the eg levels for the spine (s) Co ions, while the eg orbitals of the cross-tie (c) Co ions only represent 30% of the atomic spin density. Furthermore, the results reveal that the magnetic moments of the cross-tie Co ions, which are significantly smaller than those of the spine Co ions in the zero-field ferromagnetic structure, do not saturate by applying an external magnetic field of 2 T along the easy axis a, but that the increasing bulk magnetization originates from induced magnetic moments on the O and V sites. The refined individual magnetic moments are mu(Co_c)=1.54(4) mu_B, mu(Co_s)=2.87(3) mu_B, mu(V)=0.41(4) mu_B, mu(O1)=0.05(5) mu_B, mu(O2)=0.35(5) mu_B, and; mu(O3)=0.36(5) mu_B combining to the same macroscopic magnetization value, which was previously only attributed to the Co ions.
We have determined the depth-resolved magnetization structures of a series of highly ordered Sr$_{2}$CrReO$_{6}$ (SCRO) ferrimagnetic epitaxial films via combined studies of x-ray reflectometry, polarized neutron reflectometry and SQUID magnetometry. The SCRO films deposited directly on (LaAlO$_3$)$_{0.3}$(Sr$_2$AlTaO$_6$)$_{0.7}$ or SrTiO$_{3}$ substrates show reduced magnetization of similar width near the interfaces with the substrates, despite having different degrees of strain. When the SCRO film is deposited on a Sr$_{2}$CrNbO$_{6}$ (SCNO) double perovskite buffer layer, the width the interfacial region with reduced magnetization is reduced, agreeing with an improved Cr/Re ordering. However, the relative reduction of the magnetization averaged over the interfacial regions are comparable among the three samples. Interestingly, we found that the magnetization suppression region is wider than the Cr/Re antisite disorder region at the interface between SCRO and SCNO.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا