ﻻ يوجد ملخص باللغة العربية
The distribution of certain Mahonian statistic (called $mathrm{BAST}$) introduced by Babson and Steingr{i}msson over the set of permutations that avoid vincular pattern $1underline{32}$, is shown bijectively to match the distribution of major index over the same set. This new layer of equidistribution is then applied to give alternative interpretations of two related $q$-Stirling numbers of the second kind, studied by Carlitz and Gould. Moreover, extensions to an Euler-Mahonian statistic over ordered set partitions, and to statistics over ordered multiset partitions present themselves naturally. The latter of which is shown to be related to the recently proven Delta Conjecture. During the course, a refined relation between $mathrm{BAST}$ and its reverse complement $mathrm{STAT}$ is derived as well.
We give combinatorial proofs of $q$-Stirling identities using restricted growth words. This includes a poset theoretic proof of Carlitzs identity, a new proof of the $q$-Frobenius identity of Garsia and Remmel and of Ehrenborgs Hankel $q$-Stirling de
We use a weight-preserving, sign-reversing involution to find a combinatorial expansion of $Delta_{e_k} e_n$ at $q=1$ in terms of the elementary symmetric function basis. We then use a weight-preserving bijection to prove the Delta Conjecture at $q=1
The Legendre-Stirling numbers of the second kind were introduced by Everitt et al. in the spectral theory of powers of the Legendre differential expressions. In this paper, we provide a combinatorial code for Legendre-Stirling set partitions. As an a
Restricted Whitney numbers of the first kind appear in the combinatorial recursion for the matroid Kazhdan-Lusztig polynomials. In the special case of braid matroids (the matroid associated to the partition lattice, the complete graph, the type A Cox
The emph{$q,t$-Catalan numbers} $C_n(q,t)$ are polynomials in $q$ and $t$ that reduce to the ordinary Catalan numbers when $q=t=1$. These polynomials have important connections to representation theory, algebraic geometry, and symmetric functions. Ha