ﻻ يوجد ملخص باللغة العربية
Superpositions of rotational states in polar molecules induce strong, long-range dipolar interactions. Here we extend the rotational coherence by nearly one order of magnitude to 8.7(6) ms in a dilute gas of polar $^{23}$Na$^{40}$K molecules in an optical trap. We demonstrate spin-decoupled magic trapping, which cancels first-order and reduces second-order differential light shifts. The latter is achieved with a dc electric field that decouples nuclear spin, rotation and trapping light field. We observe density-dependent coherence times, which can be explained by dipolar interactions in the bulk gas.
This paper reviews recent advances in the study of strongly interacting systems of dipolar molecules. Heteronuclear molecules feature large and tunable electric dipole moments, which give rise to long-range and anisotropic dipole-dipole interactions.
The production of molecules from dual species atomic quantum gases has enabled experiments that employ molecules at nanoKelvin temperatures. As a result, every degree of freedom of these molecules is in a well-defined quantum state and exquisitely co
Qubit coherence times are critical to the performance of any robust quantum computing platform. For quantum information processing using arrays of polar molecules, a key performance parameter is the molecular rotational coherence time. We report a 93
Quantum states with long-lived coherence are essential for quantum computation, simulation and metrology. The nuclear spin states of ultracold molecules prepared in the singlet rovibrational ground state are an excellent candidate for encoding and st
We demonstrate a scheme for direct absorption imaging of an ultracold ground-state polar molecular gas near quantum degeneracy. A challenge in imaging molecules is the lack of closed optical cycling transitions. Our technique relies on photon shot-no