ﻻ يوجد ملخص باللغة العربية
Spintronics exploits the magnetoresistance effects to store or sense the magnetic information. Since the magnetoresistance strictly depends on the magnetic anisotropy of the system, it is fundamental to set a defined anisotropy to the system. Here, we investigate by means of vectorial Magneto-Optical Kerr Magnetometry (v-MOKE), half-metallic La0.67Sr0.33MnO3 (LSMO) thin films that exhibit at room temperature pure biaxial magnetic anisotropy if grown onto MgO (001) substrate with a thin SrTiO3 (STO) buffer. In this way, we can avoid unwanted uniaxial magnetic anisotropy contributions that may be detrimental for specific applications. The detailed study of the angular evolution of the magnetization reversal pathways, critical fields (coercivity and switching) allows for disclosing the origin of the magnetic anisotropy, which is magnetocrystalline in nature and shows four-fold symmetry at any temperature.
We investigated the ferroelectric properties of strontium titanate (STO) thin films deposited on SrTiO3 (001) substrate with SrRuO3 electrodes. The STO layer was grown coherently on the SrTiO3 substrate without in-plane lattice relaxation, but its ou
We investigated the magnetic anisotropy ratio of thin sputtered polycrystalline MgB2 films on MgO substrates. Using high magnetic field measurements, we estimated an anisotropy ratio of 1.35 for T=0 K with an upper critical field of 31.74 T in the pa
10 nm and 50 nm Co$_{2}$FeAl (CFA) thin films have been deposited on MgO(001) and Si(001) substrates by magnetron sputtering and annealed at different temperatures. X-rays diffraction revealed polycrystalline or epitaxial growth (according to the rel
TbMnO$_{3}$ films have been grown under compressive strain on (001)-oriented SrTiO$_{3}$ crystals. They have an orthorhombic structure and display the (001) orientation. With increasing thickness, the structure evolves from a more symmetric (tetragon
When comparing a set of La0.67Sr0.33MnO3 (LSMO) samples, the Curie temperature (TC) of the samples is an important figure of merit for the sample quality. Therefore, a reliable method to determine TC is required. Here, a method based on the analysis of the magnetization loops is proposed.