ترغب بنشر مسار تعليمي؟ اضغط هنا

Model-Based Safety and Security Engineering

75   0   0.0 ( 0 )
 نشر من قبل Vivek Nigam
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

By exploiting the increasing surface attack of systems, cyber-attacks can cause catastrophic events, such as, remotely disable safety mechanisms. This means that in order to avoid hazards, safety and security need to be integrated, exchanging information, such as, key hazards/threats, risk evaluations, mechanisms used. This white paper describes some steps towards this integration by using models. We start by identifying some key technical challenges. Then we demonstrate how models, such as Goal Structured Notation (GSN) for safety and Attack Defense Trees (ADT) for security, can address these challenges. In particular, (1) we demonstrate how to extract in an automated fashion security relevant information from safety assessments by translating GSN-Models into ADTs; (2) We show how security results can impact the confidence of safety assessments; (3) We propose a collaborative development process where safety and security assessments are built by incrementally taking into account safety and security analysis; (4) We describe how to carry out trade-off analysis in an automated fashion, such as identifying when safety and security arguments contradict each other and how to solve such contradictions. We conclude pointing out that these are the first steps towards a wide range of techniques to support Safety and Security Engineering. As a white paper, we avoid being too technical, preferring to illustrate features by using examples and thus being more accessible.



قيم البحث

اقرأ أيضاً

This volume contains the proceedings of the First International Workshop of Formal Techniques for Safety-Critical Systems (FTSCS 2012), held in Kyoto on November 12, 2012, as a satellite event of the ICFEM conference. The aim of this workshop is to bring together researchers and engineers interested in the application of (semi-)formal methods to improve the quality of safety-critical computer systems. FTSCS is particularly interested in industrial applications of formal methods. Topics include: - the use of formal methods for safety-critical and QoS-critical systems, including avionics, automotive, and medical systems; - methods, techniques and tools to support automated analysis, certification, debugging, etc.; - analysis methods that address the limitations of formal methods in industry; - formal analysis support for modeling languages used in industry, such as AADL, Ptolemy, SysML, SCADE, Modelica, etc.; and - code generation from validated models. The workshop received 25 submissions; 21 of these were regular papers and 4 were tool/work-in-progress/position papers. Each submission was reviewed by three referees; based on the reviews and extensive discussions, the program committee selected nine regular papers, which are included in this volume. Our program also included an invited talk by Ralf Huuck.
In industrial model-based development (MBD) frameworks, requirements are typically specified informally using textual descriptions. To enable the application of formal methods, these specifications need to be formalized in the input languages of all formal tools that should be applied to analyse the models at different development levels. In this paper we propose a unified approach for the computer-assisted formal specification of requirements and their fully automated translation into the specification languages of different verification tools. We consider a two-stage MBD scenario where first Simulink models are developed from which executable code is generated automatically. We (i) propose a specification language and a prototypical tool for the formal but still textual specification of requirements, (ii) show how these requirements can be translated automatically into the input languages of Simulink Design Verifier for verification of Simulink models and BTC EmbeddedValidator for source code verification, and (iii) show how our unified framework enables besides automated formal verification also the automated generation of test cases.
We study the impact of synchronous and asynchronous monitoring instrumentation on runtime overheads in the context of a runtime verification framework for actor-based systems. We show that, in such a context, asynchronous monitoring incurs substantia lly lower overhead costs. We also show how, for certain properties that require synchronous monitoring, a hybrid approach can be used that ensures timely violation detections for the important events while, at the same time, incurring lower overhead costs that are closer to those of an asynchronous instrumentation.
This paper attempts to address the question of how best to assure the correctness of saturation-based automated theorem provers using our experience developing the theorem prover Vampire. We describe the techniques we currently employ to ensure that Vampire is correct and use this to motivate future challenges that need to be addressed to make this process more straightforward and to achieve better correctness guarantees.
Increasingly, smart computing devices, with powerful sensors and internet connectivity, are being embedded into all new forms of infrastructure, from hospitals to roads to factories. These devices are part of the Internet of Things (IoT) and the econ omic value of their widespread deployment is estimated to be trillions of dollars, with billions of devices deployed. Consider the example of smart meters for electricity utilities. Because of clear economic benefits, including a reduction in the cost of reading meters, more precise information about outages and diagnostics, and increased benefits from predicting and balancing electric loads, such meters are already being rolled out across North America. With residential solar collection, smart meters allow individuals to sell power back to the grid providing economic incentives for conservation. Similarly, smart water meters allow water conservation in a drought. Such infrastructure upgrades are infrequent (with smart meters expected to be in service for 20-30 years) but the benefits from the upgrade justify the significant cost. A long-term benefit of such upgrades is that unforeseen savings might be realized in the future when new analytic techniques are applied to the data that is collected. The same benefits accrue to any infrastructure that embeds increased sensing and actuation capabilities via IoT devices, including roads and traffic control, energy and water management in buildings, and public health monitoring.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا