ﻻ يوجد ملخص باللغة العربية
Computably enumerable equivalence relations (ceers) received a lot of attention in the literature. The standard tool to classify ceers is provided by the computable reducibility $leq_c$. This gives rise to a rich degree-structure. In this paper, we lift the study of $c$-degrees to the $Delta^0_2$ case. In doing so, we rely on the Ershov hierarchy. For any notation $a$ for a non-zero computable ordinal, we prove several algebraic properties of the degree-structure induced by $leq_c$ on the $Sigma^{-1}_{a}smallsetminus Pi^{-1}_a$ equivalence relations. A special focus of our work is on the (non)existence of infima and suprema of $c$-degrees.
Computability theorists have introduced multiple hierarchies to measure the complexity of sets of natural numbers. The Kleene Hierarchy classifies sets according to the first-order complexity of their defining formulas. The Ershov Hierarchy classifie
We study strong types and Galois groups in model theory from a topological and descriptive-set-theoretical point of view, leaning heavily on topological dynamical tools. More precisely, we give an abstract (not model theoretic) treatment of problems
We extend some recent results about bounded invariant equivalence relations and invariant subgroups of definable groups: we show that type-definability and smoothness are equivalent conditions in a wider class of relations than heretofore considered,
We generalise the main theorems from the paper The Borel cardinality of Lascar strong types by I. Kaplan, B. Miller and P. Simon to a wider class of bounded invariant equivalence relations. We apply them to describe relationships between fundamental
A standard tool for classifying the complexity of equivalence relations on $omega$ is provided by computable reducibility. This reducibility gives rise to a rich degree structure. The paper studies equivalence relations, which induce minimal degrees