ترغب بنشر مسار تعليمي؟ اضغط هنا

Classical behaviour of Q-balls in the Wick-Cutkosky model

62   0   0.0 ( 0 )
 نشر من قبل Mikhail Smolyakov
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we continue discussing Q-balls in the Wick--Cutkosky model. Despite Q-balls in this model are composed of two scalar fields, they turn out to be very useful and illustrative for examining various important properties of Q-balls. In particular, in the present paper we study in detail (analytically and numerically) the problem of classical stability of Q-balls, including the nonlinear evolution of classically unstable Q-balls, as well as the behaviour of Q-balls in external fields in the non-relativistic limit.



قيم البحث

اقرأ أيضاً

Non-topological solitons such as Q-balls and Q-shells have been studied for scalar fields invariant under global and gauged U(1) symmetries. We generalize this framework to include a Proca mass for the gauge boson, which can arise either from spontan eous symmetry breaking or via the Stuckelberg mechanism. A heavy (light) gauge boson leads to solitons reminiscent of the global (gauged) case, but for intermediate values these Proca solitons exhibit completely novel features such as disconnected regions of viable parameter space and Q-shells with unbounded radius. We provide numerical solutions and excellent analytic approximations for both Proca Q-balls and Q-shells. These allow us to not only demonstrate the novel features numerically, but also understand and predict their origin analytically.
Scalar field theories with particular U(1)-symmetric potentials contain non-topological soliton solutions called Q-balls. Promoting the U(1) to a gauge symmetry leads to the more complicated situation of gauged Q-balls. The soliton solutions to the r esulting set of nonlinear differential equations have markedly different properties, such as a maximal possible size and charge. Despite these differences, we discover a relation that allows one to extract the properties of gauged Q-balls (such as the radius, charge, and energy) from the more easily obtained properties of global Q-balls. These results provide a new guide to understanding gauged Q-balls as well as providing simple and accurate analytical characterization of the Q-ball properties.
147 - Jakub Lis 2011
In this paper we investigate the Q-ball Ansatz in the baby Skyrme model. First, the appearance of peakons, i.e. solutions with extremely large absolute values of the second derivative at maxima, is analyzed. It is argued that such solutions are intri nsic to the baby Skyrme model and do not depend on the detailed form of a potential used in calculations. Next, we concentrate on compact non spinning Q-balls. We show the failure of a small parameter expansion in this case. Finally, we explore the existence and parameter dependence of Q-ball solutions.
223 - Jakub Lis 2009
The regularized signum-Gordon potential has a smooth minimum and is linear in the modulus of the field value for higher amplitudes. The Q-ball solutions in this model are investigated. Their existence for charges large enough is demonstrated. In thre e dimensions numerical solutions are presented and the absolute stability of large Q-balls is proved. It is also shown, that the solutions of the regularized model approach uniformly the solution of the unregularized signum-Gordon model. From the stability of Q-balls in the regularized model follows the stability of the solutions in the original theory.
In this paper, we present a detailed study of the problem of classical stability of U(1) gauged Q-balls. In particular, we show that the standard methods that are suitable for establishing the classical stability criterion for ordinary (nongauged) on e-field and two-field Q-balls are not effective in the case of U(1) gauged Q-balls, although all the technical steps of calculations can be performed in the same way as those for ordinary Q-balls. We also present the results of numerical simulations in models with different scalar field potentials, explicitly demonstrating that, in general, the regions of stability of U(1) gauged Q-balls are not defined in the same way as in the case of ordinary Q-balls. Consequently, the classical stability criterion for ordinary Q-balls cannot be applied to U(1) gauged Q-balls in the general case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا