ترغب بنشر مسار تعليمي؟ اضغط هنا

Warm inflation as a way out of the swampland

73   0   0.0 ( 0 )
 نشر من قبل Rudnei O. Ramos
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss how dissipative effects and the presence of a thermal radiation bath, which are inherent characteristics of the warm inflation dynamics, can evade the recently proposed Swampland conjectures. Different forms of dissipation terms, motivated by both microphysical quantum field theory and phenomenological models, are discussed and their viability to overcome the assumed Swampland constraints is analyzed.



قيم البحث

اقرأ أيضاً

By incorporating quantum aspects of gravity, Loop Quantum Cosmology (LQC) provides a self-consistent extension of the inflationary scenario, allowing for modifications in the primordial inflationary power spectrum with respect to the standard General Relativity one. We investigate such modifications and explore the constraints imposed by the Cosmic Microwave Background (CMB) Planck Collaboration data on the Warm Inflation (WI) scenario in the LQC context. We obtain useful relations between the dissipative parameter of WI and the bounce scale parameter of LQC. We also find that the number of required e-folds of expansion from the bounce instant till the moment the observable scales crossed the Hubble radius during inflation can be smaller in WI than in CI. In particular, we find that this depends on how large is the dissipation in WI, with the amount of required e-folds decreasing with the increasing of the dissipation value. Furthermore, by performing a Monte Carlo Markov Chain analysis for the considered WI models, we find good agreement of the model with the data. This shows that the WI models studied here can explain the current observations also in the context of LQC.
104 - Yuri Shtanov 2010
Cosmological inflation remains to be a unique mechanism of generation of plausible initial conditions in the early universe. In particular, it generates the primordial quasiclassical perturbations with power spectrum determined by the fundamental pri nciples of quantum field theory. In this work, we pay attention to the fact that the quasiclassical perturbations permanently generated at early stages of inflation break homogeneity and isotropy of the cosmological background. The evolution of the small-scale quantum vacuum modes on this inhomogeneous background results in statistical anisotropy of the primordial power spectrum, which can manifest itself in the observable large-scale structure and cosmic microwave background. The effect is predicted to have almost scale-invariant form dominated by a quadrupole and may serve as a non-trivial test of the inflationary scenario. Theoretical expectation of the magnitude of this statistical anisotropy depends on the assumptions about the physics in the trans-Planckian region of wavenumbers.
It has very recently been realized that coupling branes to higher dimensional quantum gravity theories and considering the consistency of what lives on the branes, one is able to understand whether such theories can belong either to the swampland or to the landscape. In this regard, in the present work, we study a warm inflation model embedded in the Randall-Sundrum braneworld scenario. It is explicitly shown that this model belongs to the landscape by supporting a strong dissipative regime with an inflaton steep exponential potential. The presence of extra dimension effects from the braneworld allow achieving this strong dissipative regime, which is shown to be both theoretically and observationally consistent. In fact, such strong dissipation effects, which decrease towards the end of inflation, together with the extra dimension effect, allow the present realization to simultaneously satisfy all previous restrictions imposed on such a model and to evade the recently proposed swampland conjectures. The present implementation of this model, in terms of an exponential potential for the scalar field, makes it also a possible candidate for describing the late-time Universe in the context of a dissipative quintessential inflation model and we discuss this possibility in the Conclusions.
In this paper we show how the string landscape can be constrained using observational data. We illustrate this idea by focusing on Fibre Inflation which is a promising class of string inflationary models in type IIB flux compactifications. We determi ne the values of the microscopic flux-dependent parameters which yield the best fit to the most recent cosmological datasets.
98 - Sunny Vagnozzi 2020
The NANOGrav pulsar timing array experiment reported evidence for a stochastic common-spectrum process affecting pulsar timing residuals in its 12.5-year dataset, which might be interpreted as the first detection of a stochastic gravitational wave ba ckground (SGWB). I examine whether the NANOGrav signal might be explained by an inflationary SGWB, focusing on the implications for the tensor spectral index $n_T$ and the tensor-to-scalar ratio $r$. Explaining NANOGrav while complying with upper limits on $r$ from BICEP2/Keck Array and Planck requires $r gtrsim {cal O}(10^{-6})$ in conjunction with an extremely blue tensor spectrum, $0.7 lesssim n_T lesssim 1.3$. After discussing models which can realize such a blue spectrum, I show that this region of parameter space can be brought in agreement with Big Bang Nucleosynthesis constraints for a sufficiently low reheating scale, $T_{rm rh} lesssim 100,{rm GeV}-1,{rm TeV}$. With the important caveat of having assumed a power-law parametrization for the primordial tensor spectrum, an inflationary interpretation of the NANOGrav signal is therefore not excluded.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا