ﻻ يوجد ملخص باللغة العربية
This paper proposes a systematic mathematical analysis of both the direct and inverse acoustic scattering problem given the source in Radon measure space. For the direct problem, we investigate the well-posedness including the existence, the uniqueness, and the stability by introducing a special definition of the weak solution, i.e. emph{very} weak solution. For the inverse problem, we choose the Radon measure space instead of the popular $L^1$ space to build the sparse reconstruction, which can guarantee the existence of the reconstructed solution. The sparse reconstruction problem can be solved by the semismooth Newton method in the dual space. Numerical examples are included.
We present a parametric deterministic formulation of Bayesian inverse problems with input parameter from infinite dimensional, separable Banach spaces. In this formulation, the forward problems are parametric, deterministic elliptic partial different
In this article, we investigate inverse source problems for a wide range of PDEs of parabolic and hyperbolic types as well as time-fractional evolution equations by partial interior observation. Restricting the source terms to the form of separated v
This paper is concerned with the direct and inverse random source scattering problems for elastic waves where the source is assumed to be driven by an additive white noise. Given the source, the direct problem is to determine the displacement of the
We consider inverse scattering problems for the three-dimensional Hartree equation. We prove that if the unknown interaction potential $V(x)$ of the equation satisfies some rapid decay condition, then we can uniquely determine the exact value of $par
In this paper we present a hybrid approach to numerically solve two-dimensional electromagnetic inverse scattering problems, whereby the unknown scatterer is hosted by a possibly inhomogeneous background. The approach is `hybrid in that it merges a q