ترغب بنشر مسار تعليمي؟ اضغط هنا

GAIA Cepheid parallaxes and Local Hole relieve $H_0$ tension

164   0   0.0 ( 0 )
 نشر من قبل Tom Shanks
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

There is an $approx9pm2.5$% tension between the value of Hubbles Constant, $H_0=67.4pm0.5$km,s$^{-1}$Mpc$^{-1}$, implied by the {it Planck} microwave background power spectrum and that given by the distance scale of $H_0=73.4pm1.7$km,s$^{-1}$Mpc$^{-1}$. But with a plausible assumption about a {it Gaia} DR2 parallax systematic offset, we find that {it Gaia} parallax distances of Milky Way Cepheid calibrators are $approx12-15$% longer than previously estimated. Similarly, {it Gaia} also implies $approx4.7pm1.7$% longer distances for 46 Cepheids than previous distances on the scale of Riess et al. Then we show that the existence of an $approx150$h$^{-1}$Mpc `Local Hole in the galaxy distribution implies an outflow of $approx500$km,s$^{-1}$. Accounting for this in the recession velocities of SNIa standard candles out to $zapprox0.15$ reduces $H_0$ by a further $approx1.8$%. Combining the above two results would reduce the distance scale $H_0$ estimate by $approx7$% from $H_0approx73.4pm1.7$ to $approx68.9pm1.6$ km,s$^{-1}$Mpc$^{-1}$, in reasonable agreement with the {it Planck} value. We conclude that the discrepancy between distance scale and {it Planck} $H_0$ measurements remains unconfirmed due to uncertainties caused by {it Gaia} systematics and an unexpectedly inhomogeneous local galaxy distribution.

قيم البحث

اقرأ أيضاً

We study the cosmological effects of two-body dark matter decays where the products of the decay include a massless and a massive particle. We show that if the massive daughter particle is slightly warm it is possible to relieve the tension between d istance ladder measurements of the present day Hubble parameter with measurements from the cosmic microwave background.
Riess et al (2018c) have claimed there exist seven problems in the analyses presented by Shanks et al (2018) where we argue that there is enough uncertainty in Cepheid distances and local peculiar velocity fields to explain the current tension in $H_ 0$. Here, we take each of the Riess et al (2018c) points in turn and suggest that either they do not apply or that the necessary caveats are already made by Shanks et al (2018). We conclude that the main point to be inferred from our analyses still stands which is that previous claims by Riess et al (2018b) that Gaia parallaxes confirm their Cepheid scale are, at best, premature in advance of further improvements in the Gaia astrometric solution.
74 - Kfir Blum , Luca Teodori 2021
Gravitational lensing time delays offer an avenue to measure the Hubble parameter $H_0$, with some analyses suggesting a tension with early-type probes of $H_0$. The lensing measurements must mitigate systematic uncertainties due to the mass modellin g of lens galaxies. In particular, a core component in the lens density profile would form an approximate local mass sheet degeneracy and could bias $H_0$ in the right direction to solve the lensing tension. We consider ultralight dark matter as a possible mechanism to generate such galactic cores. We show that cores of roughly the required properties could arise naturally if an ultralight axion of mass $msim10^{-25}$ eV makes up a fraction of order ten percent of the total cosmological dark matter density. A relic abundance of this order of magnitude could come from vacuum misalignment. Stellar kinematics measurements of well-resolved massive galaxies (including the Milky Way) may offer a way to test the scenario. Kinematics analyses aiming to test the core hypothesis in massive elliptical lens galaxies should not, in general, adopt the perfect mass sheet limit, as ignoring the finite extent of an actual physical core could lead to significant systematic errors.
Parallaxes for 331 classical Cepheids, 31 Type II Cepheids and 364 RR Lyrae stars in common between Gaia and the Hipparcos and Tycho-2 catalogues are published in Gaia Data Release 1 (DR1) as part of the Tycho-Gaia Astrometric Solution (TGAS). In ord er to test these first parallax measurements of the primary standard candles of the cosmological distance ladder, that involve astrometry collected by Gaia during the initial 14 months of science operation, we compared them with literature estimates and derived new period-luminosity ($PL$), period-Wesenheit ($PW$) relations for classical and Type II Cepheids and infrared $PL$, $PL$-metallicity ($PLZ$) and optical luminosity-metallicity ($M_V$-[Fe/H]) relations for the RR Lyrae stars, with zero points based on TGAS. The new relations were computed using multi-band ($V,I,J,K_{mathrm{s}},W_{1}$) photometry and spectroscopic metal abundances available in the literature, and applying three alternative approaches: (i) by linear least squares fitting the absolute magnitudes inferred from direct transformation of the TGAS parallaxes, (ii) by adopting astrometric-based luminosities, and (iii) using a Bayesian fitting approach. TGAS parallaxes bring a significant added value to the previous Hipparcos estimates. The relations presented in this paper represent first Gaia-calibrated relations and form a work-in-progress milestone report in the wait for Gaia-only parallaxes of which a first solution will become available with Gaias Data Release 2 (DR2) in 2018.
We use the latest Planck constraints, and in particular constraints on the derived parameters (Hubble constant and age of the Universe) for the local universe and compare them with local measurements of the same quantities. We propose a way to quanti fy whether cosmological parameters constraints from two different experiments are in tension or not. Our statistic, T, is an evidence ratio and therefore can be interpreted with the widely used Jeffreys scale. We find that in the framework of the LCDM model, the Planck inferred two dimensional, joint, posterior distribution for the Hubble constant and age of the Universe is in strong tension with the local measurements; the odds being ~ 1:50. We explore several possibilities for explaining this tension and examine the consequences both in terms of unknown errors and deviations from the LCDM model. In some one-parameter LCDM model extensions, tension is reduced whereas in other extensions, tension is instead increased. In particular, small total neutrino masses are favored and a total neutrino mass above 0.15 eV makes the tension highly significant (odds ~ 1:150). A consequence of accepting this interpretation of the tension is that the degenerate neutrino hierarchy is highly disfavoured by cosmological data and the direct hierarchy is slightly favored over the inverse.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا