ﻻ يوجد ملخص باللغة العربية
There is an $approx9pm2.5$% tension between the value of Hubbles Constant, $H_0=67.4pm0.5$km,s$^{-1}$Mpc$^{-1}$, implied by the {it Planck} microwave background power spectrum and that given by the distance scale of $H_0=73.4pm1.7$km,s$^{-1}$Mpc$^{-1}$. But with a plausible assumption about a {it Gaia} DR2 parallax systematic offset, we find that {it Gaia} parallax distances of Milky Way Cepheid calibrators are $approx12-15$% longer than previously estimated. Similarly, {it Gaia} also implies $approx4.7pm1.7$% longer distances for 46 Cepheids than previous distances on the scale of Riess et al. Then we show that the existence of an $approx150$h$^{-1}$Mpc `Local Hole in the galaxy distribution implies an outflow of $approx500$km,s$^{-1}$. Accounting for this in the recession velocities of SNIa standard candles out to $zapprox0.15$ reduces $H_0$ by a further $approx1.8$%. Combining the above two results would reduce the distance scale $H_0$ estimate by $approx7$% from $H_0approx73.4pm1.7$ to $approx68.9pm1.6$ km,s$^{-1}$Mpc$^{-1}$, in reasonable agreement with the {it Planck} value. We conclude that the discrepancy between distance scale and {it Planck} $H_0$ measurements remains unconfirmed due to uncertainties caused by {it Gaia} systematics and an unexpectedly inhomogeneous local galaxy distribution.
We study the cosmological effects of two-body dark matter decays where the products of the decay include a massless and a massive particle. We show that if the massive daughter particle is slightly warm it is possible to relieve the tension between d
Riess et al (2018c) have claimed there exist seven problems in the analyses presented by Shanks et al (2018) where we argue that there is enough uncertainty in Cepheid distances and local peculiar velocity fields to explain the current tension in $H_
Gravitational lensing time delays offer an avenue to measure the Hubble parameter $H_0$, with some analyses suggesting a tension with early-type probes of $H_0$. The lensing measurements must mitigate systematic uncertainties due to the mass modellin
Parallaxes for 331 classical Cepheids, 31 Type II Cepheids and 364 RR Lyrae stars in common between Gaia and the Hipparcos and Tycho-2 catalogues are published in Gaia Data Release 1 (DR1) as part of the Tycho-Gaia Astrometric Solution (TGAS). In ord
We use the latest Planck constraints, and in particular constraints on the derived parameters (Hubble constant and age of the Universe) for the local universe and compare them with local measurements of the same quantities. We propose a way to quanti