ترغب بنشر مسار تعليمي؟ اضغط هنا

The Star Formation Reference Survey III: A Multi-wavelength View of Star Formation in Nearby Galaxies

80   0   0.0 ( 0 )
 نشر من قبل Steven Willner
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present multi-wavelength global star formation rate (SFR) estimates for 326 galaxies from the Star Formation Reference Survey (SFRS) in order to determine the mutual scatter and range of validity of different indicators. The widely used empirical SFR recipes based on 1.4 GHz continuum, 8.0 $mu$m polycyclic aromatic hydrocarbons (PAH), and a combination of far-infrared (FIR) plus ultraviolet (UV) emission are mutually consistent with scatter of $raise{-0.8ex}stackrel{textstyle <}{sim }$0.3 dex. The scatter is even smaller, $raise{-0.8ex}stackrel{textstyle <}{sim }$0.24 dex, in the intermediate luminosity range 9.3<log(L(60 $mu$m/L$_odot$)<10.7. The data prefer a non-linear relation between 1.4 GHz luminosity and other SFR measures. PAH luminosity underestimates SFR for galaxies with strong UV emission. A bolometric extinction correction to far-ultraviolet luminosity yields SFR within 0.2 dex of the total SFR estimate, but extinction corrections based on UV spectral slope or nuclear Balmer decrement give SFRs that may differ from the total SFR by up to 2 dex. However, for the minority of galaxies with UV luminosity ${>}5times10^9$ L$_{odot}$ or with implied far-UV extinction <1 mag, the UV spectral slope gives extinction corrections with 0.22~dex uncertainty.



قيم البحث

اقرأ أيضاً

We have fit the far-ultraviolet (FUV) to mid-infrared (MIR) spectral energy distributions (SEDs) for several nearby galaxies ($<$ 20 Mpc). Global, radial, and local photometric measurements are explored to better understand how SED-derived star forma tion histories (SFHs) and classic star formation rate (SFR) tracers manifest at different scales. Surface brightness profiles and radial SED fitting provide insight into stellar population gradients in stellar discs and haloes. A double exponential SFH model is used in the SED fitting to better understand the distributions of young vs. old populations throughout these galaxies. Different regions of a galaxy often have undergone very different SFHs, either in strength, rate, timing, or some combination of all these factors. An analysis of individual stellar complexes within these galaxies shows a relationship between the ages of stellar clusters and how these clusters are distributed throughout the galaxy. These star formation properties are presented alongside previously published HI observations to provide a holistic picture of a small sample of nearby star-forming galaxies. The results presented here show that there is a wide variety of star formation gradients and average stellar age distributions that can manifest in a $Lambda$CDM universe.
Aims: The purpose of this work is to study the properties of the spatial distribution of the young population in three nearby galaxies in order to better understand the first stages of star formation. Methods: We used ACS/HST photometry and the pat h-linkage criterion in order to obtain a catalog of young stellar groups (YSGs) in the galaxy NGC 2403. We studied the internal distribution of stars in these YSGs using the Q parameter. We extended these analyses to the YSGs detected in in NGC 300 and NGC 253 our previous works. We built the young stars density maps for these three galaxies. Through these maps, we were able to identify and study young stellar structures on larger scales. Results: We found 573 YSGs in the galaxy NGC 2403, for which we derived their individual sizes, densities, luminosity function,and other fundamental characteristics. We find that the vast majority of the YSGs in NGC 2403, NGC 300 and NGC 253 present inner clumpings, following the same hierarchical behavior that we observed in the young stellar structures on larger scales in these galaxies. We derived values of the fractal dimension for these structures between ~ 1.5 and 1.6. These values are very similar to those obtained in other star forming galaxies and in the interstellar medium, suggesting that the star formation process is regulated by supersonic turbulence.
We constrain the mass distribution in nearby, star-forming galaxies with the Star Formation Reference Survey (SFRS), a galaxy sample constructed to be representative of all known combinations of star formation rate (SFR), dust temperature, and specif ic star formation rate (sSFR) that exist in the Local Universe. An innovative two-dimensional bulge/disk decomposition of the 2MASS/$K_{s}$-band images of the SFRS galaxies yields global luminosity and stellar mass functions, along with separate mass functions for their bulges and disks. These accurate mass functions cover the full range from dwarf galaxies to large spirals, and are representative of star-forming galaxies selected based on their infra-red luminosity, unbiased by AGN content and environment. We measure an integrated luminosity density $j$ = 1.72 $pm$ 0.93 $times$ 10$^{9}$ L$_{odot}$ $h^{-1}$ Mpc$^{-3}$ and a total stellar mass density $rho_{M}$ = 4.61 $pm$ 2.40 $times$ 10$^{8}$ M$_{odot}$ $h^{-1}$ Mpc$^{-3}$. While the stellar mass of the emph{average} star-forming galaxy is equally distributed between its sub-components, disks globally dominate the mass density budget by a ratio 4:1 with respect to bulges. In particular, our functions suggest that recent star formation happened primarily in massive systems, where they have yielded a disk stellar mass density larger than that of bulges by more than 1 dex. Our results constitute a reference benchmark for models addressing the assembly of stellar mass on the bulges and disks of local ($z = 0$) star-forming galaxies.
We review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies. Methods of measuring gas contents and star formation rates are discussed, and updated pre scriptions for calculating star formation rates are provided. We review relations between star formation and gas on scales ranging from entire galaxies to individual molecular clouds.
150 - Georgios E. Magdis 2010
We present a multi-wavelength, UV-to-radio analysis for a sample of massive (M$_{ast}$ $sim$ 10$^{10}$ M$_odot$) IRAC- and MIPS 24$mu$m-detected Lyman Break Galaxies (LBGs) with spectroscopic redshifts z$sim$3 in the GOODS-North field (L$_{rm UV}$$>1 .8times$L$^{ast}_{z=3}$). For LBGs without individual 24$mu$m detections, we employ stacking techniques at 24$mu$m, 1.1mm and 1.4GHz, to construct the average UV-to-radio spectral energy distribution and find it to be consistent with that of a Luminous Infrared Galaxy (LIRG) with L$rm_{IR}$=4.5$^{+1.1}_{-2.3}$$times 10^{11}$ L$_{odot}$ and a specific star formation rate (SSFR) of 4.3 Gyr$^{-1}$ that corresponds to a mass doubling time $sim$230 Myrs. On the other hand, when considering the 24$mu$m-detected LBGs we find among them galaxies with L$rm_{IR}> 10^{12}$ L$_{odot}$, indicating that the space density of $zsim$3 UV-selected Ultra-luminous Infrared Galaxies (ULIRGs) is $sim$(1.5$pm$0.5)$times 10^{-5}$ Mpc$^{-3}$. We compare measurements of star formation rates (SFRs) from data at different wavelengths and find that there is tight correlation (Kendalls $tau >$ 99.7%) and excellent agreement between the values derived from dust-corrected UV, mid-IR, mm and radio data for the whole range of L$rm_{IR}$ up to L$rm_{IR}$ $sim$ 10$^{13}$ L$_{odot}$. This range is greater than that for which the correlation is known to hold at z$sim$2, possibly due to the lack of significant contribution from PAHs to the 24$mu$m flux at $zsim$3. The fact that this agreement is observed for galaxies with L$rm_{IR}$ $>$ 10$^{12}$ L$_{odot}$ suggests that star-formation in UV-selected ULIRGs, as well as the bulk of star-formation activity at this redshift, is not embedded in optically thick regions as seen in local ULIRGs and submillimeter-selected galaxies at $z=2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا