ترغب بنشر مسار تعليمي؟ اضغط هنا

Extended Optical/NIR Observations of Type Iax Supernova 2014dt: Possible Signatures of a Bound Remnant

111   0   0.0 ( 0 )
 نشر من قبل Miho Kawabata
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present optical and near-infrared observations of the nearby Type Iax supernova (SN) 2014dt from 14 to 410 days after the maximum light. The velocities of the iron absorption lines in the early phase indicated that SN 2014dt showed slower expansion than the well-observed Type Iax SNe 2002cx, 2005hk and 2012Z. In the late phase, the evolution of the light curve and that of the spectra were considerably slower. The spectral energy distribution kept roughly the same shape after ~100 days, and the bolometric light curve flattened during the same period. These observations suggest the existence of an optically thick component that almost fully trapped the {gamma}-ray energy from 56 Co decay. These findings are consistent with the predictions of the weak deflagration model, leaving a bound white dwarf remnant after the explosion.



قيم البحث

اقرأ أيضاً

139 - Mridweeka Singh 2017
We present optical photometric (upto $sim$410 days since $B$$_{max}$) and spectroscopic (upto $sim$157 days since $B$$_{max}$) observations of a Type Iax supernova (SN) 2014dt located in M61. SN 2014dt is one of the brightest and closest (D $sim$ 20 Mpc) discovered Type Iax SN. SN 2014dt best matches the light curve evolution of SN 2005hk and reaches a peak magnitude of $M$$_B$ $sim$-18.13$pm$0.04 mag with $Delta m_{15}$ $sim$1.35$pm 0.06$ mag. The early spectra of SN 2014dt are similar to other Type Iax SNe, whereas the nebular spectrum at 157 days is dominated by narrow emission features with less blending as compared to SNe 2008ge and 2012Z. The ejecta velocities are between 5000 to 1000 km sec$^{-1}$ which also confirms the low energy budget of Type Iax SN 2014dt as compared to normal Type Ia SNe. Using the peak bolometric luminosity of SN 2005hk we estimate $^{56}$Ni mass of $sim$0.14 M$_{odot}$ and the striking similarity between SN 2014dt and SN 2005hk implies that a comparable amount of $^{56}$Ni would have been synthesized in the explosion of SN 2014dt.
82 - Ori D. Fox 2015
Supernovae Type Iax (SNe Iax) are less energetic and less luminous than typical thermonuclear explosions. A suggested explanation for the observed characteristics of this subclass is a binary progenitor system consisting of a CO white dwarf primary a ccreting from a helium star companion. A single-degenerate explosion channel might be expected to result in a dense circumstellar medium (CSM), although no evidence for such a CSM has yet been observed for this subclass. Here we present recent Spitzer observations of the SN Iax 2014dt obtained by the SPIRITS program nearly one year post-explosion that reveal a strong mid-IR excess over the expected fluxes of more normal SNe Ia. This excess is consistent with 1E-5 M_solar of newly formed dust, which would be the first time that newly formed dust has been observed to form in a normal Type Ia. The excess, however, is also consistent with a dusty CSM that was likely formed in pre-explosion mass-loss, thereby suggesting a single degenerate progenitor system. Compared to other SNe Ia that show significant shock interaction (SNe Ia-CSM) and interacting core-collapse events (SNe IIn), this dust shell in SN 2014dt is less massive. We consider the implications that such a pre-existing dust shell has for the progenitor system, including a binary system with a mass donor that is a red giant, a red supergiant, and an asymptotic giant branch star.
We report observations of the Type Iax supernova (SN Iax) 2012Z at optical and near-infrared wavelengths from immediately after the explosion until $sim$ $260$ days after the maximum luminosity using the Optical and Infrared Synergetic Telescopes for Education and Research (OISTER) Target-of-Opportunity (ToO) program and the Subaru telescope. We found that the near-infrared (NIR) light curve evolutions and color evolutions are similar to those of SNe Iax 2005hk and 2008ha. The NIR absolute magnitudes ($M_{J}sim-18.1$ mag and $M_{H}sim-18.3$ mag) and the rate of decline of the light curve ($Delta$ $m_{15}$($B$)$=1.6 pm 0.1$ mag) are very similar to those of SN 2005hk ($M_{J}sim-17.7$ mag, $M_{H}sim$$-18.0$ mag, and $Delta$ $m_{15}$($B$)$sim1.6$ mag), yet differ significantly from SNe 2008ha and 2010ae ($M_{J}sim-14 - -15$ mag and $Delta$ $m_{15}$($B$)$sim2.4-2.7$ mag). The estimated rise time is $12.0 pm 3.0$ days, which is significantly shorter than that of SN 2005hk or any other Ia SNe. The rapid rise indicates that the $^{56}$Ni distribution may extend into the outer layer or that the effective opacity may be lower than that in normal SNe Ia. The late-phase spectrum exhibits broader emission lines than those of SN 2005hk by a factor of 6--8. Such high velocities of the emission lines indicate that the density profile of the inner ejecta extends more than that of SN 2005hk. We argue that the most favored explosion scenario is a `failed deflagration model, although the pulsational delayed detonations is not excluded.
We present optical observations of supernova (SN) 2014ek discovered during the Tsinghua-NAOC Transient Survey (TNTS), which shows properties that are consistent with those of SN 2002cx-like events (dubbed as SNe Iax). The photometry indicates that it is underluminous compared to normal SNe Ia, with the absolute $V$-band peak magnitude being as $-17.66pm0.20$ mag. The spectra are characterized by highly ionized Fe III and intermediate-mass elements (IMEs). The expansion velocity of the ejecta is found to be $sim$5000 km s$^{-1}$ near the maximum light, only half of that measured for normal SNe Ia. The overall spectral evolution is quite similar to SN 2002cx and SN 2005hk, while the absorption features of the main IMEs seem to be relatively weaker. The ${}^{56}$Ni mass synthesized in the explosion is estimated to be about 0.08 M$_{odot}$ from the pseudo bolometric light curve. Based on a large sample of SNe Iax, we examined the relations between peak luminosity, ejecta velocity, decline rate, and peak $V - R$ color but did not find noticeable correlations between these observables, in particular when a few extreme events like SN 2008ha are excluded in the analysis. For this sample, we also studied the birthplace environments and confirm that they still hold the trend of occurring preferentially in late-type spiral galaxies. Moreover, SNe Iax tend to occur in large star-forming regions of their host galaxies, more similar to SNe Ibc than SNe II, favoring that their progenitors should be associated with very young stellar populations.
We present X-ray and radio observations of what may be the closest type Iax supernova (SN) to date, SN 2014dt (d=12.3-19.3 Mpc) and provide tight constraints on the radio and X-ray emission. We infer a specific radio luminosity of < (1.0-2.4)E25 erg/ s/Hz at a frequency of 7.5 GHz and a X-ray luminosity < 1.4E38 erg/s (0.3-10 keV) at ~38-48 days post-explosion. We interpret these limits in the context of Inverse Compton (IC) emission and synchrotron emission from a population of electrons accelerated at the forward shock of the explosion in a power-law distribution $N_e(gamma_e)propto gamma_e^{-p}$ with p=3. Our analysis constrains the progenitor system mass-loss rate to be smaller than 5E-6 solar masses per year at distances where r <= 1E16 cm for an assumed wind velocity v=100 km/s, and a fraction of post-shock energy into magnetic fields and relativistic electrons of epsilon_B=0.01 and epsilon_e=0.1, respectively. This result rules out some of the parameter space of symbiotic giant star companions, and it is consistent with the low mass-loss rates expected from He-star companions. Our calculations also show that the improved sensitivity of the next generation Very Large Array (ngVLA) is needed to probe the very low-density media characteristic of He stars that are the leading model for binary stellar companions of white dwarfs giving origin to type Iax SNe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا