ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability and instability of self-gravitating relativistic matter distributions

50   0   0.0 ( 0 )
 نشر من قبل Gerhard Rein
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider steady state solutions of the massive, asymptotically flat, spherically symmetric Einstein-Vlasov system, i.e., relativistic models of galaxies or globular clusters, and steady state solutions of the Einstein-Euler system, i.e., relativistic models of stars. Such steady states are embedded into one-parameter families parameterized by their central redshift $kappa>0$. We prove their linear instability when $kappa$ is sufficiently large, i.e., when they are strongly relativistic, and that the instability is driven by a growing mode. Our work confirms the scenario of dynamic instability proposed in the 1960s by Zeldovich & Podurets (for the Einstein-Vlasov system) and by Harrison, Thorne, Wakano, & Wheeler (for the Einstein-Euler system). Our results are in sharp contrast to the corresponding non-relativistic, Newtonian setting. We carry out a careful analysis of the linearized dynamics around the above steady states and prove an exponential trichotomy result and the corresponding index theorems for the stable/unstable invariant spaces. Finally, in the case of the Einstein-Euler system we prove a rigorous version of the turning point principle which relates the stability of steady states along the one-parameter family to the winding points of the so-called mass-radius curve.



قيم البحث

اقرأ أيضاً

We derive the non-relativistic limit of a massive vector field. We show that the Cartesian spatial components of the vector behave as three identical, non-interacting scalar fields. We find classes of spherical, cylindrical, and planar self-gravitati ng vector solitons in the Newtonian limit. The gravitational properties of the lowest-energy vector solitons$mathrm{-}$the gravitational potential and density field$mathrm{-}$depend only on the net mass of the soliton and the vector particle mass. In particular, these self-gravitating, ground-state vector solitons are independent of the distribution of energy across the vector field components, and are indistinguishable from their scalar-field counterparts. Fuzzy Vector Dark Matter models can therefore give rise to halo cores with identical observational properties to the ones in scalar Fuzzy Dark Matter models. We also provide novel hedgehog vector soliton solutions, which cannot be observed in scalar-field theories. The gravitational binding of the lowest-energy hedgehog halo is about three times weaker than the ground-state vector soliton. Finally, we show that no spherically symmetric solitons exist with a divergence-free vector field.
In this paper we show that the Schrodinger-Newton equation for spherically symmetric gravitational fields can be derived in a WKB-like expansion in 1/c from the Einstein-Klein-Gordon and Einstein-Dirac system.
113 - Elena Giorgi 2019
We prove the linear stability of subextremal Reissner-Nordstrom spacetimes as solutions to the Einstein-Maxwell equation. We make use of a novel representation of gauge-invariant quantities which satisfy a symmetric system of coupled wave equations. This system is composed of two of the three equations separately derived in previous works, where the estimates required arbitrary smallness of the charge. Here, the estimates are obtained by defining a combined energy-momentum tensor for the system in terms of the symmetric structure of the right hand sides of the equations. We obtain boundedness of the energy, Morawetz estimates and decay for the full subextremal range |Q|<M, completely in physical space. Such decay estimates, together with the estimates for the gauge-dependent quantities of the perturbations previously obtained, settle the problem of linear stability to gravitational and electromagnetic perturbations of Reissner-Nordstrom solution in the full subextremal range |Q|< M.
We consider a test of the Copernican Principle through observations of the large-scale structures, and for this purpose we study the self-gravitating system in a relativistic huge void universe model which does not invoke the Copernican Principle. If we focus on the the weakly self-gravitating and slowly evolving system whose spatial extent is much smaller than the scale of the cosmological horizon in the homogeneous and isotropic background universe model, the cosmological Newtonian approximation is available. Also in the huge void universe model, the same kind of approximation as the cosmological Newtonian approximation is available for the analysis of the perturbations contained in a region whose spatial size is much smaller than the scale of the huge void: the effects of the huge void are taken into account in a perturbative manner by using the Fermi-normal coordinates. By using this approximation, we derive the equations of motion for the weakly self-gravitating perturbations whose elements have relative velocities much smaller than the speed of light, and show the derived equations can be significantly different from those in the homogeneous and isotropic universe model, due to the anisotropic volume expansion in the huge void. We linearize the derived equations of motion and solve them. The solutions show that the behaviors of linear density perturbations are very different from those in the homogeneous and isotropic universe model.
113 - Hyeong-Chan Kim 2016
We study a static system of self-gravitating radiations confined in a sphere by using numerical and analytical calculations. Due to the scaling symmetry of radiations, most of main properties of a solution can be represented as a segment of a solutio n curve on a plane of two-dimensional scale invariant variables. We define an `approximate horizon (AH) from the analogy with an apparent horizon. Any solution curve contains a unique point which corresponds to the AH. A given solution is uniquely labelled by three parameters representing the solution curve, the size of the AH, and the sphere size, which are an alternative of the data at the outer boundary. Various geometrical properties including the existence of an AH and the behaviors around the center can be identified from the parameters. We additionally present an analytic solution of the radiations on the verge of forming a blackhole. Analytic formulae for the central mass of the naked singularity are given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا