ﻻ يوجد ملخص باللغة العربية
We consider the energy landscape of a dissipative Klein-Gordon lattice with a $phi^4$ on-site potential. Our analysis is based on suitable energy arguments, combined with a discrete version of the L{}ojasiewicz inequality, in order to justify the convergence to a single, nontrivial equilibrium for all initial configurations of the lattice. Then, global bifurcation theory is explored, to illustrate that in the discrete regime all linear states lead to nonlinear generalizations of equilibrium states. Direct numerical simulations reveal the rich structure of the equilibrium set, consisting of non-trivial topological (kink-shaped) interpolations between the adjacent minima of the on-site potential, and the wealth of dynamical convergence possibilities. These dynamical evolution results also provide insight on the potential stability of the equilibrium branches, and glimpses of the emerging global bifurcation structure, elucidating the role of the interplay between discreteness, nonlinearity and dissipation.
In this work, we revisit the question of stability of multibreather configurations, i.e., discrete breathers with multiple excited sites at the anti-continuum limit of uncoupled oscillators. We present two methods that yield quantitative predictions
We study the existence and stability of multibreathers in Klein-Gordon chains with interactions that are not restricted to nearest neighbors. We provide a general framework where such long range effects can be taken into consideration for arbitrarily
Klein-Gordon equations describe the dynamics of waves/particles in sub-atomic scales. For nonlinear Klein-Gordon equations, their breather solutions are usually known as time periodic solutions with the vanishing spatial-boundary condition. The exist
In this work, we study the existence of low amplitude four-site phase-shift multibreathers for small values of the coupling $epsilon$ in Klein-Gordon (KG) chains with interactions longer than the classical nearest-neighbour ones. In the proper parame
The dynamical symmetries of the two-dimensional Klein-Gordon equations with equal scalar and vector potentials (ESVP) are studied. The dynamical symmetries are considered in the plane and the sphere respectively. The generators of the SO(3) group cor