ترغب بنشر مسار تعليمي؟ اضغط هنا

Aldous diffusion I: a projective system of continuum $k$-tree evolutions

53   0   0.0 ( 0 )
 نشر من قبل Matthias Winkel
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Aldous diffusion is a conjectured Markov process on the space of real trees that is the continuum analogue of discrete Markov chains on binary trees. We construct this conjectured process via a consistent system of stationary evolutions of binary trees with $k$ labeled leaves and edges decorated with diffusions on a space of interval partitions constructed in previous work by the same authors. This pathwise construction allows us to study and compute path properties of the Aldous diffusion including evolutions of projected masses and distances between branch points. A key part of proving the consistency of the projective system is Rogers and Pitmans notion of intertwining.

قيم البحث

اقرأ أيضاً

We construct a stationary Markov process corresponding to the evolution of masses and distances of subtrees along the spine from the root to a branch point in a conjectured stationary, continuum random tree-valued diffusion that was proposed by David Aldous. As a corollary this Markov process induces a recurrent extension, with Dirichlet stationary distribution, of a Wright-Fisher diffusion for which zero is an exit boundary of the coordinate processes. This extends previous work of Pal who argued a Wright-Fisher limit for the three-mass process under the conjectured Aldous diffusion until the disappearance of the branch point. In particular, the construction here yields the first stationary, Markovian projection of the conjectured diffusion. Our construction follows from that of a pair of interval partition-valued diffusions that were previously introduced by the current authors as continuum analogues of down-up chains on ordered Chinese restaurants with parameters (1/2,1/2) and (1/2,0). These two diffusions are given by an underlying Crump-Mode-Jagers branching process, respectively with or without immigration. In particular, we adapt the previous construction to build a continuum analogue of a down-up ordered Chinese restaurant process with the unusual parameters (1/2,-1/2), for which the underlying branching process has emigration.
Aldous [(2007) Preprint] defined a gossip process in which space is a discrete $Ntimes N$ torus, and the state of the process at time $t$ is the set of individuals who know the information. Information spreads from a site to its nearest neighbors at rate 1/4 each and at rate $N^{-alpha}$ to a site chosen at random from the torus. We will be interested in the case in which $alpha<3$, where the long range transmission significantly accelerates the time at which everyone knows the information. We prove three results that precisely describe the spread of information in a slightly simplified model on the real torus. The time until everyone knows the information is asymptotically $T=(2-2alpha/3)N^{alpha/3}log N$. If $rho_s$ is the fraction of the population who know the information at time $s$ and $varepsilon$ is small then, for large $N$, the time until $rho_s$ reaches $varepsilon$ is $T(varepsilon)approx T+N^{alpha/3}log (3varepsilon /M)$, where $M$ is a random variable determined by the early spread of the information. The value of $rho_s$ at time $s=T(1/3)+tN^{alpha/3}$ is almost a deterministic function $h(t)$ which satisfies an odd looking integro-differential equation. The last result confirms a heuristic calculation of Aldous.
Aldous spectral gap conjecture asserts that on any graph the random walk process and the random transposition (or interchange) process have the same spectral gap. We prove the conjecture using a recursive strategy. The approach is a natural extension of the method already used to prove the validity of the conjecture on trees. The novelty is an idea based on electric network reduction, which reduces the problem to the proof of an explicit inequality for a random transposition operator involving both positive and negative rates. The proof of the latter inequality uses suitable coset decompositions of the associated matrices on permutations.
84 - Yilin Wang 2021
These notes survey the first and recent results on large deviations of Schramm-Loewner evolutions (SLE) with the emphasis on interrelations among rate functions and applications to complex analysis. More precisely, we describe the large deviations of SLE$_kappa$ when the $kappa$ parameter goes to zero in the chordal and multichordal case and to infinity in the radial case. The rate functions, namely Loewner and Loewner-Kufarev energies, are closely related to the Weil-Petersson class of quasicircles and real rational functions.
We introduce trap models on a finite volume $k$-level tree as a class of Markov jump processes with state space the leaves of that tree. They serve to describe the GREM-like trap model of Sasaki and Nemoto. Under suitable conditions on the parameters of the trap model, we establish its infinite volume limit, given by what we call a $K$-process in an infinite $k$-level tree. From this we deduce that the $K$-process also is the scaling limit of the GREM-like trap model on extreme time scales under a fine tuning assumption on the volumes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا