ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmological Measurements from Angular Power Spectra Analysis of BOSS DR12 Tomography

84   0   0.0 ( 0 )
 نشر من قبل Arthur Loureiro
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We constrain cosmological parameters by analysing the angular power spectra of the Baryon Oscillation Spectroscopic Survey DR12 galaxies, a spectroscopic follow-up of around 1.3 million SDSS galaxies over 9,376 deg$^2$ with an effective volume of $sim 6.5$ (Gpc $h^{-1}$)$^3$ in the redshift range $0.15 leq z < 0.80$. We split this sample into 13 tomographic bins ($Delta z = 0.05$); angular power spectra were calculated using a Pseudo-$C_{ell}$ estimator, and covariance matrices were estimated using log-normal simulated maps. Cosmological constraints obtained from these data were combined with constraints from Planck CMB experiment as well as the JLA supernovae compilation. Considering a $w$CDM cosmological model measured on scales up to $k_{max} = 0.07h$ Mpc$^{-1}$, we constrain a constant dark energy equation-of-state with a $sim 4%$ error at the 1-$sigma$ level: $w_0 = -0.993^{+0.046}_{-0.043}$, together with $Omega_m = 0.330pm 0.012$, $Omega_b = 0.0505 pm 0.002$, $S_8 equiv sigma_8 sqrt{Omega_m/0.3} = 0.863 pm 0.016$, and $h = 0.661 pm 0.012$. For the same combination of datasets, but now considering a $Lambda$CDM model with massive neutrinos and the same scale cut, we find: $Omega_m = 0.328 pm 0.009$, $Omega_b = 0.05017^{+0.0009}_{-0.0008}$, $S_8 = 0.862 pm 0.017$, and $h = 0.663^{+0.006}_{-0.007}$ and a 95% credible interval (CI) upper limit of $sum m_{ u} < 0.14$ eV for a normal hierarchy. These results are competitive if not better than standard analyses with the same dataset, and demonstrate this should be a method of choice for future surveys, opening the door for their full exploitation in cross-correlations probes.


قيم البحث

اقرأ أيضاً

We make use of recent developments in the analysis of galaxy redshift surveys to present an easy to use matrix-based analysis framework for the galaxy power spectrum multipoles, including wide-angle effects and the survey window function. We employ t his framework to derive the deconvolved power spectrum multipoles of 6dFGS DR3, BOSS DR12 and the eBOSS DR16 quasar sample. As an alternative to the standard analysis, the deconvolved power spectrum multipoles can be used to perform a data analysis agnostic of survey specific aspects, like the window function. We show that in the case of the BOSS dataset, the Baryon Acoustic Oscillation (BAO) analysis using the deconvolved power spectra results in the same likelihood as the standard analysis. To facilitate the analysis based on both the convolved and deconvolved power spectrum measurements, we provide the window function matrices, wide-angle matrices, covariance matrices and the power spectrum multipole measurements for the datasets mentioned above. Together with this paper we publish a code{Python}-based toolbox to calculate the different analysis components. The appendix contains a detailed user guide with examples for how a cosmological analysis of these datasets could be implemented. We hope that our work makes the analysis of galaxy survey datasets more accessible to the wider cosmology community.
Our observations of the Universe are fundamentally anisotropic, with data from galaxies separated transverse to the line of sight coming from the same epoch while that from galaxies separated parallel to the line of sight coming from different times. Moreover, galaxy velocities along the line of sight change their redshift, giving redshift space distortions. We perform a full two-dimensional anisotropy analysis of galaxy clustering data, fitting in a substantially model independent manner the angular diameter distance D_A, Hubble parameter H, and growth rate ddelta/dln a without assuming a dark energy model. The results demonstrate consistency with LCDM expansion and growth, hence also testing general relativity. We also point out the interpretation dependence of the effective redshift z_eff, and its cosmological impact for next generation surveys.
We present a cosmic void catalog using the large-scale structure galaxy catalog from the Baryon Oscillation Spectroscopic Survey (BOSS). This galaxy catalog is part of the Sloan Digital Sky Survey (SDSS) Data Release 12 and is the final catalog of SD SS-III. We take into account the survey boundaries, masks, and angular and radial selection functions, and apply the ZOBOV void finding algorithm to the galaxy catalog. We identify a total of 10,643 voids. After making quality cuts to ensure that the voids represent real underdense regions, we obtain 1,228 voids with effective radii spanning the range 20-100Mpc/h and with central densities that are, on average, 30% of the mean sample density. We relea
In this study, we probe the transition to cosmic homogeneity in the Large Scale Structure (LSS) of the Universe using the CMASS galaxy sample of BOSS spectroscopic survey which covers the largest effective volume to date, $3 h^{-3} mathrm{Gpc}^3$ at $0.43 leq z leq 0.7$. We study the scaled counts-in-spheres, $mathcal{N}(<r)$, and the fractal correlation dimension, $mathcal{D}_2(r)$, to assess the homogeneity scale of the universe using a $Landy & Szalay$ inspired estimator. Defining the scale of transition to homogeneity as the scale at which $mathcal{D}_2(r)$ reaches 3 within $1%$, i.e. $mathcal{D}_2(r)>2.97$ for $r>mathcal{R}_H$, we find $mathcal{R}_H = (63.3pm0.7) h^{-1} mathrm{Mpc}$, in agreement at the percentage level with the predictions of the $Lambda$CDM model $mathcal{R}_H=62.0 h^{-1} mathrm{Mpc}$. Thanks to the large cosmic depth of the survey, we investigate the redshift evolution of the transition to homogeneity scale and find agreement with the $Lambda$CDM prediction. Finally, we find that $mathcal{D}_2$ is compatible with $3$ at scales larger than $300 h^{-1} $Mpc in all redshift bins. These results consolidate the Cosmological Principle and represent a precise consistency test of the $Lambda CDM$ model.
Future galaxy clustering surveys will probe small scales where non-linearities become important. Since the number of modes accessible on intermediate to small scales is very high, having a precise model at these scales is important especially in the context of discriminating alternative cosmological models from the standard one. In the mildly non-linear regime, such models typically differ from each other, and galaxy clustering data will become very precise on these scales in the near future. As the observable quantity is the angular power spectrum in redshift space, it is important to study the effects of non-linear density and redshift space distortion (RSD) in the angular power spectrum. We compute non-linear contributions to the angular power spectrum using a flat-sky approximation that we introduce in this work, and compare the results of different perturbative approaches with $N$-body simulations. We find that the TNS perturbative approach is significantly closer to the $N$-body result than Eulerian or Lagrangian 1-loop approximations, effective field theory of large scale structure or a halofit-inspired model. However, none of these prescriptions is accurate enough to model the angular power spectrum well into the non-linear regime. In addition, for narrow redshift bins, $Delta z lesssim 0.01$, the angular power spectrum acquires non-linear contributions on all scales, right down to $ell=2$, and is hence not a reliable tool at this time. To overcome this problem, we need to model non-linear RSD terms, for example as TNS does, but for a matter power spectrum that remains reasonably accurate well into the deeply non-linear regime, such as halofit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا