ترغب بنشر مسار تعليمي؟ اضغط هنا

Transient crosslinking kinetics optimize gene cluster interactions

106   0   0.0 ( 0 )
 نشر من قبل Benjamin Walker
 تاريخ النشر 2018
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Our understanding of how chromosomes structurally organize and dynamically interact has been revolutionized through the lens of long-chain polymer physics. Major protein contributors to chromosome structure and dynamics are condensin and cohesin that stochastically generate loops within and between chains, and entrap proximal strands of sister chromatids. In this paper, we explore the ability of transient, protein-mediated, gene-gene crosslinks to induce clusters of genes, thereby dynamic architecture, within the highly repeated ribosomal DNA that comprises the nucleolus of budding yeast. We implement three approaches: live cell microscopy; computational modeling of the full genome during G1 in budding yeast, exploring four decades of timescales for transient crosslinks between 5k bp domains in the nucleolus on Chromosome XII; and, temporal network models with automated community detection algorithms applied to the full range of 4D modeling datasets. The data analysis tools detect and track gene clusters, their size, number, persistence time, and their plasticity. Of biological significance, our analysis reveals an optimal mean crosslink lifetime that promotes pairwise and cluster gene interactions through flexible clustering. In this state, large gene clusters self-assemble yet frequently interact, marked by gene exchanges between clusters, which in turn maximizes global gene interactions in the nucleolus. This regime stands between two limiting cases each with far less global gene interactions: with shorter crosslink lifetimes, rigid clustering emerges with clusters that interact infrequently; with longer crosslink lifetimes, there is a dissolution of clusters. These observations are compared with imaging experiments on a normal yeast strain and two condensin-modified mutant cell strains, applying the same image analysis pipeline to the experimental and simulated datasets.



قيم البحث

اقرأ أيضاً

145 - Xiang Wan , Can Yang , Qiang Yang 2010
Gene-gene interactions have long been recognized to be fundamentally important to understand genetic causes of complex disease traits. At present, identifying gene-gene interactions from genome-wide case-control studies is computationally and methodo logically challenging. In this paper, we introduce a simple but powerful method, named `BOolean Operation based Screening and Testing(BOOST). To discover unknown gene-gene interactions that underlie complex diseases, BOOST allows examining all pairwise interactions in genome-wide case-control studies in a remarkably fast manner. We have carried out interaction analyses on seven data sets from the Wellcome Trust Case Control Consortium (WTCCC). Each analysis took less than 60 hours on a standard 3.0 GHz desktop with 4G memory running Windows XP system. The interaction patterns identified from the type 1 diabetes data set display significant difference from those identified from the rheumatoid arthritis data set, while both data sets share a very similar hit region in the WTCCC report. BOOST has also identified many undiscovered interactions between genes in the major histocompatibility complex (MHC) region in the type 1 diabetes data set. In the coming era of large-scale interaction mapping in genome-wide case-control studies, our method can serve as a computationally and statistically useful tool.
Precision medicine is a paradigm shift in healthcare relying heavily on genomics data. However, the complexity of biological interactions, the large number of genes as well as the lack of comparisons on the analysis of data, remain a tremendous bottl eneck regarding clinical adoption. In this paper, we introduce a novel, automatic and unsupervised framework to discover low-dimensional gene biomarkers. Our method is based on the LP-Stability algorithm, a high dimensional center-based unsupervised clustering algorithm, that offers modularity as concerns metric functions and scalability, while being able to automatically determine the best number of clusters. Our evaluation includes both mathematical and biological criteria. The recovered signature is applied to a variety of biological tasks, including screening of biological pathways and functions, and characterization relevance on tumor types and subtypes. Quantitative comparisons among different distance metrics, commonly used clustering methods and a referential gene signature used in the literature, confirm state of the art performance of our approach. In particular, our signature, that is based on 27 genes, reports at least $30$ times better mathematical significance (average Dunns Index) and 25% better biological significance (average Enrichment in Protein-Protein Interaction) than those produced by other referential clustering methods. Finally, our signature reports promising results on distinguishing immune inflammatory and immune desert tumors, while reporting a high balanced accuracy of 92% on tumor types classification and averaged balanced accuracy of 68% on tumor subtypes classification, which represents, respectively 7% and 9% higher performance compared to the referential signature.
115 - Sigve Nakken 2021
Summary: Interpretation and prioritization of candidate hits from genome-scale screening experiments represent a significant analytical challenge, particularly when it comes to an understanding of cancer relevance. We have developed a flexible tool t hat substantially refines gene set interpretability in cancer by leveraging a broad scope of prior knowledge unavailable in existing frameworks, including data on target tractabilities, tumor-type association strengths, protein complexes and protein-protein interactions, tissue and cell-type expression specificities, subcellular localizations, prognostic associations, cancer dependency maps, and information on genes of poorly defined or unknown function. Availability: oncoEnrichR is developed in R, and is freely available as a stand-alone R package. A web interface to oncoEnrichR is provided through the Galaxy framework (https://oncotools.elixir.no). All code is open-source under the MIT license, with documentation, example datasets and and instructions for usage available at https://github.com/sigven/oncoEnrichR/ Contact: [email protected]
The Dissertation is focused on the studies of associations between functional elements in human genome and their nucleotide structure. The asymmetry in nucleotide content (skew, bias) was chosen as the main feature for nucleotide structure. A signifi cant difference in nucleotide content asymmetry was found for human exons vs. introns. Specifically, exon sequences display bias for purines (i.e., excess of A and G over C and T), while introns exhibit keto-amino skew (i.e. excess of G and T over A and C). The extents of these biases depend upon gene expression patterns. The highest intronic keto-amino skew is found in the introns of housekeeping genes. In the case of introns, whose sequences are under weak repair system, the AT->GC and CG->TA substitutions are preferentially accumulated. A comparative analysis of gene sequences encoding cytochrome P450 2E1 of Homo sapiens and representative mammals was done. The cladistic tree on the basis of coding sequences similarity of the gene Cyp2e1 was constructed. A new programming tools of NCBI database sequence mining and analysis was developed, resulting in construction of a own database.
We train a neural network to predict chemical toxicity based on gene expression data. The input to the network is a full expression profile collected either in vitro from cultured cells or in vivo from live animals. The output is a set of fine graine d predictions for the presence of a variety of pathological effects in treated animals. When trained on the Open TG-GATEs database it produces good results, outperforming classical models trained on the same data. This is a promising approach for efficiently screening chemicals for toxic effects, and for more accurately evaluating drug candidates based on preclinical data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا