ﻻ يوجد ملخص باللغة العربية
We revisit an alternate explanation for the turbulent nature of molecular clouds - namely, that velocity dispersions matching classical predictions of driven turbulence can be generated by the passage of clumpy material through a shock. While previous work suggested this mechanism can reproduce the observed Larson relation between velocity dispersion and size scale ($sigma propto L^{Gamma}$ with $Gamma approx 0.5$), the effects of self-gravity and magnetic fields were not considered. We run a series of smoothed particle magnetohydrodynamics experiments, passing clumpy gas through a shock in the presence of a combination of self-gravity and magnetic fields. We find powerlaw relations between $sigma$ and $L$ throughout, with indices ranging from $Gamma=0.3-1.2$. These results are relatively insensitive to the strength and geometry of magnetic fields, provided that the shock is relatively strong. $Gamma$ is strongly sensitive to the angle between the gas bulk velocity and the shock front, and the shock strength (compared to the gravitational boundness of the pre-shock gas). If the origin of the $sigma-L$ relation is in clumpy shocks, deviations from the standard Larson relation constrain the strength and behaviour of shocks in spiral galaxies.
We expand our study on the dispersion of polarization angles in molecular clouds. We show how the effect of signal integration through the thickness of the cloud as well as across the area subtended by the telescope beam inherent to dust continuum me
Supernovae from core-collapse of massive stars drive shocks into the molecular clouds from which the stars formed. Such shocks affect future star formation from the molecular clouds, and the fast-moving, dense gas with compressed magnetic fields is a
Magnetic fields are dynamically important in the diffuse interstellar medium. Understanding how gravitationally bound, star-forming clouds form requires modeling of the fields in a self-consistent, supernova-driven, turbulent, magnetized, stratified
We expand on the dispersion analysis of polarimetry maps toward applications to interferometry data. We show how the filtering of low-spatial frequencies can be accounted for within the idealized Gaussian turbulence model, initially introduced for si
The Zeeman effect and dust grain alignment are two major methods for probing magnetic fields (B-fields) in molecular clouds, largely motivated by the study of star formation, as the B-field may regulate gravitational contraction and channel turbulenc