ترغب بنشر مسار تعليمي؟ اضغط هنا

TESS Discovery of a Transiting Super-Earth in the $pi$ Mensae System

62   0   0.0 ( 0 )
 نشر من قبل Xu Chelsea Huang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection of a transiting planet around $pi$ Mensae (HD 39091), using data from the Transiting Exoplanet Survey Satellite (TESS). The solar-type host star is unusually bright (V=5.7) and was already known to host a Jovian planet on a highly eccentric, 5.7-year orbit. The newly discovered planet has a size of $2.04pm 0.05$ $R_oplus$ and an orbital period of 6.27 days. Radial-velocity data from the HARPS and AAT/UCLES archives also displays a 6.27-day periodicity, confirming the existence of the planet and leading to a mass determination of $4.82pm 0.85$ $M_oplus$. The stars proximity and brightness will facilitate further investigations, such as atmospheric spectroscopy, asteroseismology, the Rossiter--McLaughlin effect, astrometry, and direct imaging.



قيم البحث

اقرأ أيضاً

We report on the confirmation and mass determination of Pi Men c, the first transiting planet discovered by NASAs TESS space mission. Pi Men is a naked-eye (V=5.65 mag), quiet G0 V star that was previously known to host a sub-stellar companion (Pi Me n b) on a long-period (Porb = 2091 days), eccentric (e = 0.64) orbit. Using TESS time-series photometry, combined with Gaia data, published UCLES@AAT Doppler measurements, and archival [email protected] radial velocities, we found that Pi Men c is a close-in planet with an orbital period of Porb = 6.27 days, a mass of Mc = 4.52 +/- 0.81 MEarth, and a radius of Rc = 2.06 +/- 0.03 REarth. Based on the planets orbital period and size, Pi Men c is a super-Earth located at, or close to, the radius gap, while its mass and bulk density suggest it may have held on to a significant atmosphere. Because of the brightness of the host star, this system is highly suitable for a wide range of further studies to characterize the planetary atmosphere and dynamical properties. We also performed an asteroseismic analysis of the TESS data and detected a hint of power excess consistent with the seismic values expected for this star, although this result depends on the photometric aperture used to extract the light curve. This marginal detection is expected from pre-launch simulations hinting at the asteroseismic potential of the TESS mission for longer, multi-sector observations and/or for more evolved bright stars.
Measuring the geometry of multi-planet extrasolar systems can provide insight into their dynamical history and the processes of planetary formation. Such measurements are challenging for systems detected through indirect techniques such as radial vel ocity and transit, having only been measured for a handful of systems to-date. We aimed to place constraints on the orbital geometry of the outer planet in the $pi$ Mensae system, a G0V star at 18.3 pc host to a wide-orbit super-jovian ($Msin i = 10.02pm0.15$ $M_{rm Jup}$) with a 5.7-year period and an inner transiting super-earth ($M=4.82pm0.85$ $M_oplus$) with a 6.3-d period. We combined astrometric measurements from the Hipparcos and Gaia satellites with a precisely determined spectroscopic orbit in an attempt to constrain the inclination of the orbital plane of the outer planet. We measured an inclination of $i_b=49.9_{-4.5}^{+5.3}$ deg for the orbital plane of $pi$ Mensae b, leading to a direct measurement of its mass of $13.01_{-0.95}^{+1.03}$ $M_{rm Jup}$. We found a significant mutual inclination between the orbital planes of the two planets; a 95% credible interval for $i_{rm mut}$ of between $34.5^circ$ and $140.6^circ$ after accounting for the unknown position angle of the orbit of $pi$ Mensae c, strongly excluding a co-planar scenario for the two planets within this system. All orbits are stable in the present-day configuration, and secular oscillations of planet cs eccentricity are quenched by general relativistic precession. Planet c may have undergone high eccentricity tidal migration triggered by Kozai-Lidov cycles, but dynamical histories involving disk migration or in situ formation are not ruled out. Nonetheless, this system provides the first direct evidence that giant planets with large mutual inclinations have a role to play in the origins and evolution of some super-Earth systems.
We have detected transits of the innermost planet e orbiting 55 Cnc (V=6.0), based on two weeks of nearly continuous photometric monitoring with the MOST space telescope. The transits occur with the period (0.74 d) and phase that had been predicted b y Dawson & Fabrycky, and with the expected duration and depth for the crossing of a Sun-like star by a hot super-Earth. Assuming the stars mass and radius to be 0.963_{-0.029}^{+0.051} M_sun and 0.943 +/- 0.010 R_sun, the planets mass, radius, and mean density are 8.63 +/- 0.35 Mearth, 2.00 +/- 0.14 Rearth, and 5.9_{-1.1}^{+1.5} g/cm^3. The mean density is comparable to that of Earth, despite the greater mass and consequently greater compression of the interior of 55 Cnc e. This suggests a rock-iron composition supplemented by a significant mass of water, gas, or other light elements. Outside of transits, we detected a sinusoidal signal resembling the expected signal due to the changing illuminated phase of the planet, but with a full range (168 +/- 70 ppm) too large to be reflected light or thermal emission. This signal has no straightforward interpretation and should be checked with further observations. The host star of 55 Cnc e is brighter than that of any other known transiting planet, which will facilitate future investigations.
We report the discovery of the super-Earth K2-265 b detected with K2 photometry. The planet orbits a bright (V_mag = 11.1) star of spectral type G8V with a period of 2.37 days. We obtained high-precision follow-up radial velocity measurements from HA RPS, and the joint Bayesian analysis showed that K2-265 b has a radius of 1.71 +/- 0.11 R_earth and a mass of 6.54 +/- 0.84 M_earth, corresponding to a bulk density of 7.1 +/- 1.8 g/cm^3 . Composition analysis of the planet reveals an Earth-like, rocky interior, with a rock mass fraction of 80%. The short orbital period and small radius of the planet puts it below the lower limit of the photoevaporation gap, where the envelope of the planet could have eroded due to strong stellar irradiation, leaving behind an exposed core. Knowledge of the planet core composition allows us to infer the possible formation and evolution mechanism responsible for its current physical parameters.
Kepler-20 is a solar-type star (V = 12.5) hosting a compact system of five transiting planets, all packed within the orbital distance of Mercury in our own Solar System. A transition from rocky to gaseous planets with a planetary transition radius of ~1.6 REarth has recently been proposed by several publications in the literature (Rogers 2015;Weiss & Marcy 2014). Kepler-20b (Rp ~ 1.9 REarth) has a size beyond this transition radius, however previous mass measurements were not sufficiently precise to allow definite conclusions to be drawn regarding its composition. We present new mass measurements of three of the planets in the Kepler-20 system facilitated by 104 radial velocity measurements from the HARPS-N spectrograph and 30 archival Keck/HIRES observations, as well as an updated photometric analysis of the Kepler data and an asteroseismic analysis of the host star (MStar = 0.948+-0.051 Msun and Rstar = 0.964+-0.018 Rsun). Kepler-20b is a 1.868+0.066-0.034 REarth planet in a 3.7 day period with a mass of 9.70+1.41-1.44 MEarth resulting in a mean density of 8.2+1.5-1.3 g/cc indicating a rocky composition with an iron to silicate ratio consistent with that of the Earth. This makes Kepler-20b the most massive planet with a rocky composition found to date. Furthermore, we report the discovery of an additional non-transiting planet with a minimum mass of 19.96+3.08-3.61 MEarth and an orbital period of ~34 days in the gap between Kepler-20f (P ~ 11 days) and Kepler-20d (P ~ 78 days).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا