ترغب بنشر مسار تعليمي؟ اضغط هنا

Skeleton-to-Response: Dialogue Generation Guided by Retrieval Memory

82   0   0.0 ( 0 )
 نشر من قبل Deng Cai
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

For dialogue response generation, traditional generative models generate responses solely from input queries. Such models rely on insufficient information for generating a specific response since a certain query could be answered in multiple ways. Consequentially, those models tend to output generic and dull responses, impeding the generation of informative utterances. Recently, researchers have attempted to fill the information gap by exploiting information retrieval techniques. When generating a response for a current query, similar dialogues retrieved from the entire training data are considered as an additional knowledge source. While this may harvest massive information, the generative models could be overwhelmed, leading to undesirable performance. In this paper, we propose a new framework which exploits retrieval results via a skeleton-then-response paradigm. At first, a skeleton is generated by revising the retrieved responses. Then, a novel generative model uses both the generated skeleton and the original query for response generation. Experimental results show that our approaches significantly improve the diversity and informativeness of the generated responses.

قيم البحث

اقرأ أيضاً

To diversify and enrich generated dialogue responses, knowledge-grounded dialogue has been investigated in recent years. The existing methods tackle the knowledge grounding challenge by retrieving the relevant sentences over a large corpus and augmen ting the dialogues with explicit extra information. Despite their success, however, the existing works have drawbacks on the inference efficiency. This paper proposes KnowExpert, an end-to-end framework to bypass the explicit retrieval process and inject knowledge into the pre-trained language models with lightweight adapters and adapt to the knowledge-grounded dialogue task. To the best of our knowledge, this is the first attempt to tackle this challenge without retrieval in this task under an open-domain chit-chat scenario. The experimental results show that KknowExpert performs comparably with some retrieval-based baselines while being time-efficient in inference, demonstrating the potential of our proposed direction.
Existing methods for Dialogue Response Generation (DRG) in Task-oriented Dialogue Systems (TDSs) can be grouped into two categories: template-based and corpus-based. The former prepare a collection of response templates in advance and fill the slots with system actions to produce system responses at runtime. The latter generate system responses token by token by taking system actions into account. While template-based DRG provides high precision and highly predictable responses, they usually lack in terms of generating diverse and natural responses when compared to (neural) corpus-based approaches. Conversely, while corpus-based DRG methods are able to generate natural responses, we cannot guarantee their precision or predictability. Moreover, the diversity of responses produced by todays corpus-based DRG methods is still limited. We propose to combine the merits of template-based and corpus-based DRGs by introducing a prototype-based, paraphrasing neural network, called P2-Net, which aims to enhance quality of the responses in terms of both precision and diversity. Instead of generating a response from scratch, P2-Net generates system responses by paraphrasing template-based responses. To guarantee the precision of responses, P2-Net learns to separate a response into its semantics, context influence, and paraphrasing noise, and to keep the semantics unchanged during paraphrasing. To introduce diversity, P2-Net randomly samples previous conversational utterances as prototypes, from which the model can then extract speaking style information. We conduct extensive experiments on the MultiWOZ dataset with both automatic and human evaluations. The results show that P2-Net achieves a significant improvement in diversity while preserving the semantics of responses.
Having engaging and informative conversations with users is the utmost goal for open-domain conversational systems. Recent advances in transformer-based language models and their applications to dialogue systems have succeeded to generate fluent and human-like responses. However, they still lack control over the generation process towards producing contentful responses and achieving engaging conversations. To achieve this goal, we present textbf{DiSCoL} (textbf{Di}alogue textbf{S}ystems through textbf{Co}versational textbf{L}ine guided response generation). DiSCoL is an open-domain dialogue system that leverages conversational lines (briefly textbf{convlines}) as controllable and informative content-planning elements to guide the generation model produce engaging and informative responses. Two primary modules in DiSCoLs pipeline are conditional generators trained for 1) predicting relevant and informative convlines for dialogue contexts and 2) generating high-quality responses conditioned on the predicted convlines. Users can also change the returned convlines to textit{control} the direction of the conversations towards topics that are more interesting for them. Through automatic and human evaluations, we demonstrate the efficiency of the convlines in producing engaging conversations.
In comparison to the interpretation of classification models, the explanation of sequence generation models is also an important problem, however it has seen little attention. In this work, we study model-agnostic explanations of a representative tex t generation task -- dialogue response generation. Dialog response generation is challenging with its open-ended sentences and multiple acceptable responses. To gain insights into the reasoning process of a generation model, we propose anew method, local explanation of response generation (LERG) that regards the explanations as the mutual interaction of segments in input and output sentences. LERG views the sequence prediction as uncertainty estimation of a human response and then creates explanations by perturbing the input and calculating the certainty change over the human response. We show that LERG adheres to desired properties of explanations for text generation including unbiased approximation, consistency and cause identification. Empirically, our results show that our method consistently improves other widely used methods on proposed automatic- and human- evaluation metrics for this new task by 4.4-12.8%. Our analysis demonstrates that LERG can extract both explicit and implicit relations between input and output segments.
Virtual assistants such as Google Assistant, Amazon Alexa, and Apple Siri enable users to interact with a large number of services and APIs on the web using natural language. In this work, we investigate two methods for Natural Language Generation (N LG) using a single domain-independent model across a large number of APIs. First, we propose a schema-guided approach which conditions the generation on a schema describing the API in natural language. Our second method investigates the use of a small number of templates, growing linearly in number of slots, to convey the semantics of the API. To generate utterances for an arbitrary slot combination, a few simple templates are first concatenated to give a semantically correct, but possibly incoherent and ungrammatical utterance. A pre-trained language model is subsequently employed to rewrite it into coherent, natural sounding text. Through automatic metrics and human evaluation, we show that our method improves over strong baselines, is robust to out-of-domain inputs and shows improved sample efficiency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا