ﻻ يوجد ملخص باللغة العربية
We present Rosetta observations from comet 67P/Churyumov-Gerasimenko during the impact of a coronal mass ejection (CME). The CME impacted on 5-6 Oct 2015, when Rosetta was about 800 km from the comet nucleus, textcolor{black}{and 1.4 AU from the Sun}. Upon impact, the plasma environment is compressed to the level that solar wind ions, not seen a few days earlier when at 1500 km, now reach Rosetta. In response to the compression, the flux of suprathermal electrons increases by a factor of 5-10 and the background magnetic field strength increases by a factor of $sim$2.5. The plasma density increases by a factor of 10 and reaches 600 cm$^{-3}$, due to increased particle impact ionisation, charge exchange and the adiabatic compression of the plasma environment. We also observe unprecedentedly large magnetic field spikes at 800 km, reaching above 200 nT, which are interpreted as magnetic flux ropes. We suggest that these could possibly be formed by magnetic reconnection processes in the coma as the magnetic field across the CME changes polarity, or as a consequence of strong shears causing Kelvin-Helmholtz instabilities in the plasma flow. Due to the textcolor{black}{limited orbit of Rosetta}, we are not able to observe if a tail disconnection occurs during the CME impact, which could be expected based on previous remote observations of other CME-comet interactions.
We present Rosetta RPC case study from four events at various radial distance, phase angle and local time from autumn 2015, just after perihelion of comet 67P/Churyumov-Gerasimenko. Pulse like (high amplitude, up to minutes in time) signatures are se
The Rosetta spacecraft detected transient and sporadic diamagnetic regions around comet 67P/Churyumov-Gerasimenko. In this paper we present a statistical analysis of bulk and suprathermal electron dynamics, as well as a case study of suprathermal ele
The Rosetta lander Philae successfully landed on the nucleus of comet 67P/Churyumov-Gerasimenko on 12 November 2014. Philae carries the Dust Impact Monitor (DIM) on board, which is part of the Surface Electric Sounding and Acoustic Monitoring Experim
Because of the high fraction of refractory material present in comets, the heat produced by the radiogenic decay of elements such as aluminium and iron can be high enough to induce the loss of ultravolatile species such as nitrogen, argon or carbon m
We report on magnetic field measurements made in the innermost coma of 67P/Churyumov-Gerasimenko in its low activity state. Quasi-coherent, large-amplitude ($delta B/B sim 1$), compressional magnetic field oscillations at $sim$ 40 mHz dominate the im