ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron Star Mergers Are the Dominant Source of the r-process in the Early Evolution of Dwarf Galaxies

57   0   0.0 ( 0 )
 نشر من قبل Evan Kirby
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

There are many candidate sites of the r-process: core-collapse supernovae (including rare magnetorotational core-collapse supernovae), neutron star mergers, and neutron star/black hole mergers. The chemical enrichment of galaxies---specifically dwarf galaxies---helps distinguish between these sources based on the continual build-up of r-process elements. This technique can distinguish between the r-process candidate sites by the clearest observational difference---how quickly these events occur after the stars are created. The existence of several nearby dwarf galaxies allows us to measure robust chemical abundances for galaxies with different star formation histories. Dwarf galaxies are especially useful because simple chemical evolution models can be used to determine the sources of r-process material. We have measured the r-process element barium with Keck/DEIMOS medium-resolution spectroscopy. We present the largest sample of barium abundances (almost 250 stars) in dwarf galaxies ever assembled. We measure [Ba/Fe] as a function of [Fe/H] in this sample and compare with existing [alpha/Fe] measurements. We have found that a large contribution of barium needs to occur at more delayed timescales than core-collapse supernovae in order to explain our observed abundances, namely the significantly more positive trend of the r-process component of [Ba/Fe] vs. [Fe/H] seen for [Fe/H] <~ -1.6 when compared to the [Mg/Fe] vs. [Fe/H] trend. We conclude that neutron star mergers are the most likely source of r-process enrichment in dwarf galaxies at early times.

قيم البحث

اقرأ أيضاً

We study the evolution of rapid neutron-capture process (r-process) isotopes in the Galaxy. We analyze relative contributions from core collapse supernovae (CCSNe), neutron star mergers (NSMs) and collapsars under a range of astrophysical conditions and nuclear input data. Although the r-process in each of these sites can lead to similar (or differing) isotopic abundances, our simulations reveal that the early contribution of r-process material to the Galaxy was dominated by CCSNe and collapsar r-process nucleosynthesis, while the NSM contribution is unavoidably delayed even under the assumption of the shortest possible minimum merger time.
We have performed r-process calculations for matter ejected dynamically in neutron star mergers based on a complete set of trajectories from a three-dimensional relativistic smoothed particle hydrodynamic simulation. Our calculations consider an exte nded nuclear network, including spontaneous, $beta$- and neutron-induced fission and adopting fission yield distributions from the ABLA code. We have studied the sensitivity of the r-process abundances to nuclear masses by using different models. Most of the trajectories, corresponding to 90% of the ejected mass, follow a relatively slow expansion allowing for all neutrons to be captured. The resulting abundances are very similar to each other and reproduce the general features of the observed r-process abundance (the second and third peaks, the rare-earth peak and the lead peak) for all mass models as they are mainly determined by the fission yields. We find distinct differences in the abundance yields at and just above the third peak, which can be traced back to different predictions of neutron separation energies for r-process nuclei around neutron number $N=130$. The remaining trajectories, which contribute 10% by mass to the total integrated abundances, follow such a fast expansion that the r process does not use all the neutrons. This also leads to a larger variation of abundances among trajectories as fission does not dominate the r-process dynamics. The total integrated abundances are dominated by contributions from the slow abundances and hence reproduce the general features of the observed r-process abundances. We find that at timescales of weeks relevant for kilonova light curve calculations, the abundance of actinides is larger than the one of lanthanides. Hence actinides can be even more important than lanthanides to determine the photon opacities under kilonova conditions. (Abridged)
The abundance of elements synthesized by the rapid neutron-capture process (r-process elements) of extremely metal-poor (EMP) stars in the Local Group galaxies gives us clues to clarify the early evolutionary history of the Milky Way halo. The Local Group dwarf galaxies would have similarly evolved with building blocks of the Milky Way halo. However, how the chemo-dynamical evolution of the building blocks affects the abundance of r-process elements is not yet clear. In this paper, we perform a series of simulations using dwarf galaxy models with various dynamical times and total mass, which determine star-formation histories. We find that galaxies with dynamical times longer than 100 Myr have star formation rates less than $10^{-3} M_{odot}$ yr$^{-1}$ and slowly enrich metals in their early phase. These galaxies can explain the observed large scatters of r-process abundance in EMP stars in the Milky Way halo regardless of their total mass. On the other hand, the first neutron star merger appears at a higher metallicity in galaxies with a dynamical time shorter than typical neutron star merger times. The scatters of r-process elements mainly come from inhomogeneity of the metals in the interstellar medium whereas the scatters of $alpha$-elements are mostly due to the difference in the yield of each supernova. Our results demonstrate that the future observations of r-process elements in EMP stars will be able to constrain the early chemo-dynamical evolution of the Local Group galaxies.
Material ejected during (or immediately following) the merger of two neutron stars may assemble into heavy elements by the r-process. The subsequent radioactive decay of the nuclei can power electromagnetic emission similar to, but significantly dimm er than, an ordinary supernova. Identifying such events is an important goal of future transient surveys, offering new perspectives on the origin of r-process nuclei and the astrophysical sources of gravitational waves. Predictions of the transient light curves and spectra, however, have suffered from the uncertain optical properties of heavy ions. Here we consider the opacity of expanding r-process material and argue that it is dominated by line transitions from those ions with the most complex valence electron structure, namely the lanthanides. For a few representative ions, we run atomic structure models to calculate radiative data for tens of millions of lines. We find that the resulting r-process opacities are orders of magnitude larger than that of ordinary (e.g., iron-rich) supernova ejecta. Radiative transport calculations using these new opacities indicate that the transient emission should be dimmer and redder than previously thought. The spectra appear pseudo-blackbody, with broad absorption features, and peak in the infrared (~1 micron). We discuss uncertainties in the opacities and attempt to quantify their impact on the spectral predictions. The results have important implications for observational strategies to find and study the radioactively powered electromagnetic counterparts to compact object mergers.
In this paper we measure the merger fraction and rate, both minor and major, of massive early-type galaxies (M_star >= 10^11 M_Sun) in the COSMOS field, and study their role in mass and size evolution. We use the 30-band photometric catalogue in COSM OS, complemented with the spectroscopy of the zCOSMOS survey, to define close pairs with a separation 10h^-1 kpc <= r_p <= 30h-1 kpc and a relative velocity Delta v <= 500 km s^-1. We measure both major (stellar mass ratio mu = M_star,2/M_star,1 >= 1/4) and minor (1/10 <= mu < 1/4) merger fractions of massive galaxies, and study their dependence on redshift and on morphology. The merger fraction and rate of massive galaxies evolves as a power-law (1+z)^n, with major mergers increasing with redshift, n_MM = 1.4, and minor mergers showing little evolution, n_mm ~ 0. When split by their morphology, the minor merger fraction for early types is higher by a factor of three than that for spirals, and both are nearly constant with redshift. Our results show that massive early-type galaxies have undergone 0.89 mergers (0.43 major and 0.46 minor) since z ~ 1, leading to a mass growth of ~30%. We find that mu >= 1/10 mergers can explain ~55% of the observed size evolution of these galaxies since z ~ 1. Another ~20% is due to the progenitor bias (younger galaxies are more extended) and we estimate that very minor mergers (mu < 1/10) could contribute with an extra ~20%. The remaining ~5% should come from other processes (e.g., adiabatic expansion or observational effects). This picture also reproduces the mass growth and velocity dispersion evolution of these galaxies. We conclude from these results that merging is the main contributor to the size evolution of massive ETGs at z <= 1, accounting for ~50-75% of that evolution in the last 8 Gyr. Nearly half of the evolution due to mergers is related to minor (mu < 1/4) events.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا