ترغب بنشر مسار تعليمي؟ اضغط هنا

The first 48: Discovery and progenitor constraints on the Type Ia supernova 2013gy

103   0   0.0 ( 0 )
 نشر من قبل Simon Holmbo
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an early-phase $g$-band light curve and visual-wavelength spectra of the normal Type Ia supernova (SN) 2013gy. The light curve is constructed by determining the appropriate S-corrections to transform KAIT natural-system $B$- and $V$-band photometry and Carnegie Supernova Project natural-system $g$-band photometry to the Pan-STARRS1 $g$-band natural photometric system. A Markov Chain Monte Carlo calculation provides a best-fit single power-law function to the first ten epochs of photometry described by an exponent of $2.16^{+0.06}_{-0.06}$ and a time of first light of MJD 56629.4$^{+0.1}_{-0.1}$, which is $1.93^{+0.12}_{-0.13}$ days (i.e., $<48$~hr) before the discovery date (2013 December 4.84 UT) and $-19.10^{+0.12}_{-0.13}$ days before the time of $B$-band maximum (MJD 56648.5$pm0.1$). The estimate of the time of first light is consistent with the explosion time inferred from the evolution of the Si II $lambda$6355 Doppler velocity. Furthermore, discovery photometry and previous nondetection limits enable us to constrain the companion radius down to $R_c leq 4,R_{odot}$. In addition to our early-time constraints, we use a deep +235 day nebular-phase spectrum from Magellan/IMACS to place a stripped H-mass limit of $< 0.018,M_{odot}$. Combined, these limits effectively rule out H-rich nondegenerate companions.

قيم البحث

اقرأ أيضاً

On 2014 Dec. 9.61, the All-Sky Automated Survey for SuperNovae (ASAS-SN or Assassin) discovered ASASSN-14lp just $sim2$ days after first light using a global array of 14-cm diameter telescopes. ASASSN-14lp went on to become a bright supernova ($V = 1 1.94$ mag), second only to SN 2014J for the year. We present prediscovery photometry (with a detection less than a day after first light) and ultraviolet through near-infrared photometric and spectroscopic data covering the rise and fall of ASASSN-14lp for more than 100 days. We find that ASASSN-14lp had a broad light curve ($Delta m_{15}(B) = 0.80 pm 0.05$), a $B$-band maximum at $2457015.82 pm 0.03$, a rise time of $16.94^{+ 0.11 }_{- 0.10 }$ days, and moderate host--galaxy extinction ($E(B-V)_{textrm{host}} = 0.33 pm 0.06$). Using ASASSN-14lp we derive a distance modulus for NGC 4666 of $mu = 30.8 pm 0.2$ corresponding to a distance of $14.7 pm 1.5$ Mpc. However, adding ASASSN-14lp to the calibrating sample of Type Ia supernovae still requires an independent distance to the host galaxy. Finally, using our early-time photometric and spectroscopic observations, we rule out red giant secondaries and, assuming a favorable viewing angle and explosion time, any non-degenerate companion larger than $0.34 R_{textrm{sun}}$.
134 - S. Toonen 2017
Even though Type Ia supernovae (SNIa) play an important role in many fields in astronomy, the nature of the progenitors of SNIa remain a mystery. One of the classical evolutionary pathways towards a SNIa explosion is the single degenerate (SD) channe l, in which a carbon-oxygen white dwarf accretes matter from its non-degenerate companion until it reaches the Chandrasekhar mass. Constraints on the contribution from the SD channel to the overall SNIa rate come from a variety of methods, e.g. from abundances, from signatures of the companion star in the light curve or near the SNIa remnant, and from synthetic SNIa rates. In this proceedings, I show that when incorporating our newest understandings of binary evolution, the SNIa rate from the single degenerate channel is enhanced. I also discuss the applicability of these constraints on the evolution of SNIa progenitors.
We report unique EVLA observations of SN 2011fe representing the most sensitive radio study of a Type Ia supernova to date. Our data place direct constraints on the density of the surrounding medium at radii ~10^15-10^16 cm, implying an upper limit o n the mass loss rate from the progenitor system of Mdot <~ 6 x 10^-10 Msol/yr (assuming a wind speed of 100 km/s), or expansion into a uniform medium with density n_CSM <~ 6 cm^-3. Drawing from the observed properties of non-conservative mass transfer among accreting white dwarfs, we use these limits on the density of the immediate environs to exclude a phase space of possible progenitors systems for SN 2011fe. We rule out a symbiotic progenitor system and also a system characterized by high accretion rate onto the white dwarf that is expected to give rise to optically-thick accretion winds. Assuming that a small fraction, 1%, of the mass accreted is lost from the progenitor system, we also eliminate much of the potential progenitor parameter space for white dwarfs hosting recurrent novae or undergoing stable nuclear burning. Therefore, we rule out the most popular single degenerate progenitor models for SN 2011fe, leaving a limited phase space inhabited by some double degenerate systems and exotic progenitor scenarios.
We present the results of an extensive observational campaign on the nearby Type Ibn SN 2015G, including data from radio through ultraviolet wavelengths. SN 2015G was asymmetric, showing late-time nebular lines redshifted by ~1000 km/s. It shared man y features with the prototypical SN In 2006jc, including extremely strong He I emssion lines and a late-time blue pseudocontinuum. The young SN 2015G showed narrow P-Cygni profiles of He I, but never in its evolution did it show any signature of hydrogen - arguing for a dense, ionized, and hydrogen-free circumstellar medium moving outward with a velocity of ~1000 km/s and created by relatively recent mass loss from the progenitor star. Ultraviolet through infrared observations show that the fading SN 2015G (which was probably discovered some 20 days post-peak) had a spectral energy distribution that was well described by a simple, single-component blackbody. Archival HST images provide upper limits on the luminosity of SN 2015Gs progenitor, while nondetections of any luminous radio afterglow and optical nondetections of outbursts over the past two decades provide constraints upon its mass-loss history.
Supernova LSQ13abf was discovered soon after explosion by the La Silla-QUEST Survey and followed by the CSP II at optical and near-IR wavelengths. Our analysis indicates LSQ13abf was discovered within two days of explosion and its first 10 days of ev olution reveal a B-band light curve with an abrupt drop in luminosity. Contemporaneously, the V-band light curve exhibits a rise towards a first peak and the r- and i-band light curves show no early peak. The early light-curve evolution of LSQ13abf is reminiscent of the post explosion cooling phase observed in the Type Ib SN 2008D, and the similarity between the two objects extends over weeks. Spectroscopically, LSQ13abf resembles SN 2008D with P Cygni He I features that strengthen over time. Spectral energy distributions are constructed from broad-band photometry, and by fitting black-body (BB) functions a UVOIR light curve is constructed, and the underlying BB-temperature and BB-radius profiles are estimated. Explosion parameters are estimated by simultaneously fitting an Arnett model to the UVOIR light curve and the velocity evolution derived from spectral features, and a post-shock breakout cooling model to the first two epochs of the bolometric evolution. This combined model suggests an explosion energy of 1.3x10$^{51}$ ergs, a relatively high ejecta mass of 5.94 M$_{odot}$, a Ni mass of 0.16 M$_{odot}$, and a progenitor-star radius of 28.0 R$_{odot}$. The ejecta mass suggests the origins of LSQ13abf lie with a >25 M$_{odot}$ ZAMS progenitor and its radius is three and nine times larger than values estimated from the same analysis applied to observations of SNe 2008D and 1999ex, respectively. Alternatively, comparison of hydrodynamical simulations of >20-25 M$_{odot}$ ZAMS progenitors that evolve to pre-SN envelope masses around 10 M$_{odot}$ and extended (~100 R$_{odot}$) envelopes also match the observations of LSQ13abf.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا