ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray and UV emission of the ultrashort-period, low-mass eclipsing binary system BX Tri

67   0   0.0 ( 0 )
 نشر من قبل Volker Perdelwitz
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Close binary systems provide an excellent tool to determine stellar parameters such as radii and masses with a high degree of precision. Due to the high rotational velocities, most of these systems exhibit strong signs of magnetic activity, which has been postulated to be the underlying reason for radius inflation in many of the components. We aim to extend the sample of low-mass binary systems with well-known X-ray properties. For this, we analyze data from a singular XMM-Newton pointing of the close, low-mass eclipsing binary system BX Tri. The UV light curve is modeled with the eclipsing binary modeling tool PHOEBE and data acquired with the EPIC cameras is analyzed to search for hints of orbital modulation. We find clear evidence of orbital modulation in the UV light curve and show that PHOEBE is fully capable of modeling data within this wavelength range. Comparison to a theoretical flux prediction based on PHOENIX models shows that the majority of UV emission is of photospheric origin. While the X-ray light curve does exhibit strong variations, the signal-to-noise ratio of the observation is insufficient for a clear detection of signs of orbital modulation. There is evidence of a Neupert-like correlation between UV and X-ray data.



قيم البحث

اقرأ أيضاً

We present new photometric and spectroscopic observations for 2M 1533+3759 (= NSVS 07826147). It has an orbital period of 0.16177042 day, significantly longer than the 2.3--3.0 hour periods of the other known eclipsing sdB+dM systems. Spectroscopic a nalysis of the hot primary yields Teff = 29230 +/- 125 K, log g = 5.58 +/- 0.03 and log N(He)/N(H) = -2.37 +/- 0.05. The sdB velocity amplitude is K1 = 71.1 +/- 1.0 km/s. The only detectable light contribution from the secondary is due to the surprisingly strong reflection effect. Light curve modeling produced several solutions corresponding to different values of the system mass ratio, q(M2/M1), but only one is consistent with a core helium burning star, q=0.301. The orbital inclination is 86.6 degree. The sdB primary mass is M1 = 0.376 +/- 0.055 Msun and its radius is R1 = 0.166 +/- 0.007 Rsun. 2M1533+3759 joins PG0911+456 (and possibly also HS2333+3927) in having an unusually low mass for an sdB star. SdB stars with masses significantly lower than the canonical value of 0.48 Msun, down to as low as 0.30 Msun, were theoretically predicted by Han et al. (2002, 2003), but observational evidence has only recently begun to confirm the existence of such stars. The existence of core helium burning stars with masses lower than 0.40--0.43 Msun implies that at least some sdB progenitors have initial main sequence masses of 1.8--2.0 Msun or more, i.e. they are at least main sequence A stars. The secondary is a main sequence M5 star.
Low-mass stars in eclipsing binary systems show radii larger and effective temperatures lower than theoretical stellar models predict for isolated stars with the same masses. Eclipsing binaries with low-mass components are hard to find due to their l ow luminosity. As a consequence, the analysis of the known low-mass eclipsing systems is key to understand this behavior. We developed a physical model of the LMDEB system NSVS 10653195 to accurately measure the masses and radii of the components. We obtained several high-resolution spectra in order to fit a spectroscopic orbit. Standardized absolute photometry was obtained to measure reliable color indices and to measure the mean Teff of the system in out-of-eclipse phases. We observed and analyzed optical VRI and infrared JK band differential light-curves which were fitted using PHOEBE. A Markov-Chain Monte Carlo (MCMC) simulation near the solution found provides robust uncertainties for the fitted parameters. NSVS 10653195 is a detached eclipsing binary composed of two similar stars with masses of M1=0.6402+/-0.0052 Msun and M2=0.6511+/-0.0052 Msun and radii of R1=0.687^{+0.017}_{-0.024} Rsun and R2=0.672^{+0.018}_{-0.022} Rsun. Spectral types were estimated to be K6V and K7V. These stars rotate in a circular orbit with an orbital inclination of i=86.22+/-0.61 degrees and a period of P=0.5607222(2) d. The distance to the system is estimated to be d=135.2^{+7.6}_{-7.9} pc, in excellent agreement with the value from Gaia. If solar metallicity were assumed, the age of the system would be older than log(age)~8 based on the Mbol-log Teff diagram. NSVS 10653195 is composed of two oversized and active K stars. While their radii is above model predictions their Teff are in better agreement with models.
132 - O. Kose , B. Kalomeni , V. Keskin 2011
In this study we determined precise orbital and physical parameters of the very short period low-mass contact binary system CC Com. The parameters are obtained by analysis of the new CCD data with the archival spectroscopic data. The physical paramet ers of the components derived as $M_textrm{c}$ = 0.717(14) $M_{odot}$, $M_textrm{h}$ = 0.378(8) $M_{odot}$, $R_textrm{c}$ = 0.708(12) $R_{odot}$, $R_textrm{h}$ = 0.530(10) $R_{odot}$, $L_textrm{c}$ = 0.138(12) $L_{odot}$, $L_textrm{h}$ = 0.085(7) $L_{odot}$, and the distance of the system is estimated as 64(4) pc. The times of minima obtained in this study and with those published before enable us to calculate the mass transfer rate between the components which is $1.6times10^{-8}$ M$_{odot}$yr$^{-1}$. Finally, we discuss the possible evolutionary scenario of CC Com.
Photometric observations in V and I bands and low-dispersion spectra of ten ultrashort-period binaries (NSVS 2175434, NSVS 2607629, NSVS 5038135, NSVS 8040227, NSVS 9747584, NSVS 4876238, ASAS 071829-0336.7, SWASP 074658.62+224448.5, NSVS 2729229, NS VS 10632802) are presented. One of them, NSVS 2729229, is newly discovered target. The results from modeling and analysis of our observations revealed that: (i) Eight targets have overcontact configurations with considerable fillout factor (up to 0.5) while NSVS 4876238 and ASAS 0718-03 have almost contact configurations; (ii) NSVS 4876238 is rare ultrashort-period binary of detached type; (iii) all stellar components are late dwarfs; (iv) the temperature difference of the components of each target does not exceed 400 K; (v) NSVS 2175434 and SWASP 074658.62+224448.5 exhibit total eclipses and their parameters could be assumed as well-determined; (v) NSVS 2729229 shows emission in the H_{alpha} line. Masses, radii and luminosities of the stellar components were estimated by the empirical relation period, orbital axis for short- and ultrashort-period binaries. We found linear relations mass-luminosity and mass-radius for the stellar components of our targets.
282 - E. Bozzo , P. Pjanka , P. Romano 2016
In this paper, we report on the available X-ray data collected by INTEGRAL, Swift, and XMM-Newton during the first outburst of the INTEGRAL transient IGR J17451-3022, discovered in 2014 August. The monitoring observations provided by the JEM-X instru ments on-board INTEGRAL and the Swift/XRT showed that the event lasted for about 9 months and that the emission of the source remained soft for the entire period. The source emission is dominated by a thermal component (kT~1.2 keV), most likely produced by an accretion disk. The XMM-Newton observation carried out during the outburst revealed the presence of multiple absorption features in the soft X-ray emission that could be associated to the presence of an ionized absorber lying above the accretion disk, as observed in many high-inclination low mass X-ray binaries. The XMM-Newton data also revealed the presence of partial and rectangular X-ray eclipses (lasting about 820 s), together with dips. The latter can be associated with increases in the overall absorption column density in the direction of the source. The detection of two consecutive X-ray eclipses in the XMM-Newton data allowed us to estimate the source orbital period at 22620.5(-1.8,+2.0) s (1{sigma} c.l.).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا