ﻻ يوجد ملخص باللغة العربية
Saturns polar stratosphere exhibits the seasonal growth and dissipation of broad, warm, vortices poleward of $sim75^circ$ latitude, which are strongest in the summer and absent in winter. The longevity of the exploration of the Saturn system by Cassini allows the use of infrared spectroscopy to trace the formation of the North Polar Stratospheric Vortex (NPSV), a region of enhanced temperatures and elevated hydrocarbon abundances at millibar pressures. We constrain the timescales of stratospheric vortex formation and dissipation in both hemispheres. Although the NPSV formed during late northern spring, by the end of Cassinis reconnaissance (shortly after northern summer solstice), it still did not display the contrasts in temperature and composition that were evident at the south pole during southern summer. The newly-formed NPSV was bounded by a strengthening stratospheric thermal gradient near $78^circ$N. The emergent boundary was hexagonal, suggesting that the Rossby wave responsible for Saturns long-lived polar hexagon - which was previously expected to be trapped in the troposphere - can influence the stratospheric temperatures some 300 km above Saturns clouds.
The incredible longevity of Cassinis orbital mission at Saturn has provided the most comprehensive exploration of a seasonal giant planet to date. This review explores Saturns changing global temperatures, composition, and aerosol properties between
The winter polar vortices on Mars are annular in terms of their potential vorticity (PV) structure, a phenomenon identified in observations, reanalysis and some numerical simulations. Some recent modeling studies have proposed that condensation of at
We present an analysis of recent high spatial and spectral resolution ground-based infrared observations of H3+ spectra obtained with the 10-metre Keck II telescope in April 2011. We observed H3+ emission from Saturns northern and southern auroral re
The magnetospheric cusps are important sites of the coupling of a magnetosphere with the solar wind. The combination of both ground- and space-based observations at Earth have enabled considerable progress to be made in understanding the terrestrial
The seasonal evolution of Saturns polar atmospheric temperatures and hydrocarbon composition is derived from a decade of Cassini Composite Infrared Spectrometer (CIRS) 7-16 $mu$m thermal infrared spectroscopy. We construct a near-continuous record of