ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the impact of Lorentz Invariance Violation (LIV) on the $gamma-gamma$ opacity of the Universe to VHE-gamma rays, compared to the effect of local under-densities (voids) of the Extragalactic Background Light, and on the Compton scattering process. Both subluminal and superluminal modifications of the photon dispersion relation are considered. In the subluminal case, LIV effects may result in a significant reduction of the $gamma-gamma$ opacity for photons with energies $gtrsim 10$ TeV. However, the effect is not expected to be sufficient to explain the apparent spectral hardening of several observed VHE $gamma$-ray sources in the energy range from 100 GeV - a few TeV, even when including effects of plausible inhomogeneities in the cosmic structure. Superluminal modifications of the photon dispersion relation lead to a further enhancement of the EBL $gammagamma$ opacity. We consider, for the first time, the influence of LIV on the Compton scattering process. We find that this effect becomes relevant only for photons at ultra-high energies, $E gtrsim 1$ PeV. In the case of a superluminal modification of the photon dispersion relation, both the kinematic recoil effect and the Klein-Nishina suppression of the cross section are reduced. However, we argue that the effect is unlikely to be of astrophysical significance.
The assumption of Lorentz invariance is one of the founding principles of Modern Physics and violation of it would have profound implications to our understanding of the universe. For instance, certain theories attempting a unified theory of quantum
Some Quantum Gravity (QG) theories allow for a violation of Lorentz invariance (LIV), manifesting as a dependence of the velocity of light in vacuum on its energy. If such a dependence exists, then photons of different energies emitted together by a
Due to the high energies and long distances to the sources, astrophysical observations provide a unique opportunity to test possible signatures of Lorentz invariance violation (LIV). Superluminal LIV enables the decay of photons at high energy. The H
We discuss the prospects of doing tests of Lorentz invariance with gamma-rays observed with present and future ground based gamma-ray observatories.
We analyze the MeV/GeV emission from four bright Gamma-Ray Bursts (GRBs) observed by the Fermi-Large Area Telescope to produce robust, stringent constraints on a dependence of the speed of light in vacuo on the photon energy (vacuum dispersion), a fo