ترغب بنشر مسار تعليمي؟ اضغط هنا

3D-Printed Optics for Wafer-Scale Probing

97   0   0.0 ( 0 )
 نشر من قبل Mareike Trappen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Mass production of photonic integrated circuits requires high-throughput wafer-level testing. We demonstrate that optical probes equipped with 3D-printed elements allow for efficient coupling of light to etched facets of nanophotonic waveguides. The technique is widely applicable to different integration platforms.

قيم البحث

اقرأ أيضاً

Compact and robust waveguide chips are crucial for new integrated terahertz applications, such as high-speed interconnections between processors and broadband short-range wireless communications. Progress on topological photonic crystals shows potent ial to improve integrated terahertz systems that suffer from high losses around sharp bends. Robust terahertz topological transport through sharp bends on a silicon chip has been recently reported over a relatively narrow bandwidth. Here, we report the experimental demonstration of topological terahertz planar air-channel metallic waveguides which can be integrated into an on-chip interconnect. Our platform can be fabricated by a simple, cost-effective technique combining 3D-printing and gold-sputtering. The relative size of the measured topological bandgap is ~12.5%, which entails significant improvement over all-silicon terahertz topological waveguides (~7.8%). We further demonstrate robust THz propagation around defects and delay lines. Our work provides a promising path towards compact integrated terahertz devices as a next frontier for terahertz wireless communications.
In this work, We combined fully atomistic molecular dynamics and finite elements simulations with mechanical testings to investigate the mechanical behavior of atomic and 3D-printed models of pentadiamond. Pentadiamond is a recently proposed new carb on allotrope, which is composed of a covalent network of pentagonal rings. Our results showed that the stress-strain behavior is almost scale-independent. The stress-strain curves of the 3D-printed structures exhibit three characteristic regions. For low-strain values, this first region presents a non-linear behavior close to zero, followed by a well-defined linear behavior. The second regime is a quasi-plastic one and the third one is densification followed by structural failures (fracture). The Youngs modulus values decrease with the number of pores. The deformation mechanism is bending-dominated and different from the layer-by-layer deformation mechanism observed for other 3D-printed structures. They exhibit good energy absorption capabilities, with some structures even outperforming kevlar. Interestingly, considering the Ashby chart, 3D-printed pentadiamond lies almost on the ideal stretch and bending-dominated lines, making them promising materials for energy absorption applications.
Future quantum technology relies crucially on building quantum networks with high fidelity. To achieve this challenging goal, it is of utmost importance to connect single quantum systems in a way such that their emitted single-photons overlap with th e highest possible degree of coherence. This requires perfect mode overlap of the emitted light of different emitters, which necessitates the use of single mode fibers. Here we present an advanced manufacturing approach to accomplish this task: we combine 3D printed complex micro-optics such as hemispherical and Weierstrass solid immersion lenses as well as total internal reflection solid immersion lenses on top of single InAs quantum dots with 3D printed optics on single mode fibers and compare their key features. Interestingly, the use of hemispherical solid immersion lenses further increases the localization accuracy of the emitters to below 1 nm when acquiring micro-photoluminescence maps. The system can be joined together and permanently fixed. This integrated system can be cooled by dipping into liquid helium, by a Stirling cryocooler or by a closed-cycle helium cryostat without the necessity for optical windows, as all access is through the integrated single mode fiber. We identify the ideal optical designs and present experiments that prove excellent high-rate single-photon emission by high-contrast Hanbury Brown and Twiss experiments.
The possibility of using Infrared Lock-In Thermography (LIT) to estimate the thickness of a sample was assessed and shown to be accurate up to 1.8mm. LIT is a technique involving heating samples with halogen lamps with varying intensity over time. Th e intensity is defined by sinusoidal functions. LIT was conducted on samples of varying thickness, gradient, and shape. The Lock-In phase signals were calculated, and a database was then created with the data obtained and was used to estimate the thickness based on the original phase signal. A relationship between gradient and phase signal was also shown based on our data, contrary to current findings in existing literature.
Graphene and related materials can lead to disruptive advances in next generation photonics and optoelectronics. The challenge is to devise growth, transfer and fabrication protocols providing high (>5,000 cm2 V-1 s-1) mobility devices with reliable performance at the wafer scale. Here, we present a flow for the integration of graphene in photonics circuits. This relies on chemical vapour deposition (CVD) of single layer graphene (SLG) matrices comprising up to ~12000 individual single crystals (SCs), grown to match the geometrical configuration of the devices in the photonic circuit. This is followed by a transfer approach which guarantees coverage over ~80% of the device area, and integrity for up to 150 mm wafers, with room temperature mobility ~5000 cm2 V-1 s-1. We use this process flow to demonstrate double SLG electro-absorption modulators with modulation efficiency ~0.25, 0.45, 0.75, 1 dB V-1 for device lengths ~30, 60, 90, 120 {mu}m. The data rate is up to 20 Gbps. Encapsulation with single-layer hBN is used to protected SLG during plasma-enhanced CVD of Si3N4, ensuring reproducible device performance. Our full process flow (from growth to device fabrication) enables the commercial implementation of graphene-based photonic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا