ﻻ يوجد ملخص باللغة العربية
We study the evolution of the population genealogy in the classic neutral Moran Model of finite size and in discrete time. The stochastic transformations that shape a Moran population can be realized directly on its genealogy and give rise to a process with a state space consisting of the finite set of Yule trees of a certain size. We derive a number of properties of this process, and show that they are in agreement with existing results on the infinite-population limit of the Moran Model. Most importantly, this process admits time reversal, which gives rise to another tree-valued Markov Chain and allows for a thorough investigation of the Most Recent Common Ancestor process.
We define the Sampled Moran Genealogy Process, a continuous-time Markov process on the space of genealogies with the demography of the classical Moran process, sampled through time. To do so, we begin by defining the Moran Genealogy Process using a n
We reconsider the Moran model in continuous time with population size $N$, two allelic types, and selection. We introduce a new particle representation, which we call the labelled Moran model, and which has the same distribution of type frequencies a
The distributions of the times to the first common ancestor t_mrca is numerically studied for an ecological population model, the extended Moran model. This model has a fixed population size N. The number of descendants is drawn from a beta distribut
Evolutionary dynamics has been classically studied for homogeneous populations, but now there is a growing interest in the non-homogenous case. One of the most important models has been proposed by Lieberman, Hauert and Nowak, adapting to a weighted