ترغب بنشر مسار تعليمي؟ اضغط هنا

Baikal-GVD: status and prospects

120   0   0.0 ( 0 )
 نشر من قبل Alexander Avrorin
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Baikal-GVD is a next generation, kilometer-scale neutrino telescope under construction in Lake Baikal. It is designed to detect astrophysical neutrino fluxes at energies from a few TeV up to 100 PeV. GVD is formed by multi-megaton subarrays (clusters). The array construction started in 2015 by deployment of a reduced-size demonstration cluster named Dubna. The first cluster in its baseline configuration was deployed in 2016, the second in 2017 and the third in 2018. The full scale GVD will be an array of ~10000 light sensors with an instrumented volume of about 2 cubic km. The first phase (GVD-1) is planned to be completed by 2020-2021. It will comprise 8 clusters with 2304 light sensors in total. We describe the design of Baikal-GVD and present selected results obtained in 2015-2017.



قيم البحث

اقرأ أيضاً

In April 2015 the demonstration cluster Dubna was deployed and started to take data in Lake Baikal. This array is the first cluster of the cubic kilometer scale Gigaton Volume Detector (Baikal-GVD), which is constructed in Lake Baikal. In this contri bution we will review the design and status of the array.
141 - J. Amare , S. Cebrian , C. Cuesta 2014
ANAIS (Annual modulation with NAI Scintillators) experiment aims to look for dark matter annual modulation with 250 kg of ultrapure NaI(Tl) scintillators at the Canfranc Underground Laboratory (LSC), in order to confirm the DAMA/LIBRA positive signal in a model-independent way. The detector will consist in an array of close-packed single modules, each of them coupled to two high efficiency Hamamatsu photomultipliers. Two 12.5 kg each NaI(Tl) crystals provided by Alpha Spectra are currently taking data at the LSC. These modules have shown an outstanding light collection efficiency (12-16 phe/keV), about the double of that from DAMA/LIBRA phase 1 detectors, which could enable reducing the energy threshold down to 1 keVee. ANAIS crystal radiopurity goals are fulfilled for 232Th and 238U chains, assuming equilibrium, and in the case of 40K, present crystals activity (although not at the required 20 ppb level) could be acceptable. However, a 210Pb contamination out-of-equilibrium has been identified and its origin traced back, so we expect it will be avoided in next prototypes. Finally, current status and prospects of the experiment considering several exposure and background scenarios are presented.
In April 2019, the Baikal-GVD collaboration finished the installation of the fourth and fifth clusters of the neutrino telescope Baikal-GVD. Momentarily, 1440 Optical Modules (OM) are installed in the largest and deepest freshwater lake in the world, Lake Baikal, instrumenting 0.25 cubic km of sensitive volume. The Baikal-GVD is thus the largest neutrino telescope on the Northern Hemisphere. The first phase of the detector construction is going to be finished in 2021 with 9 clusters, 2592 OMs in total, however the already installed clusters are stand-alone units which are independently operational and taking data from their commissioning. Huge number of channels as well as strict requirements for the precision of the time and charge calibration (ns, p.e.) make calibration procedures vital and very complex tasks. The inter cluster time calibration is performed with numerous calibration systems. The charge calibration is carried out with a Single Photo-Electron peak. The various data acquired during the last three years in regular and special calibration runs validate successful performance of the calibration systems and of the developed calibration techniques. The precision of the charge calibration has been improved and the time dependence of the obtained calibration parameters have been cross-checked. The multiple calibration sources verified a 1.5 - 2.0 ns precision of the in-situ time calibrations. The time walk effect has been studied in detail with in situ specialized calibration runs.
Baikal-GVD is a kilometer scale neutrino telescope currently under construction in Lake Baikal. Due to water currents in Lake Baikal, individual photomultiplier housings are mobile and can drift away from their initial position. In order to accuratel y determine the coordinates of the photomultipliers, the telescope is equipped with an acoustic positioning system. The system consists of a network of acoustic modems, installed along the telescope strings and uses acoustic trilateration to determine the coordinates of individual modems. This contribution discusses the current state of the positioning in Baikal-GVD, including the recent upgrade to the acoustic modem polling algorithm.
A cubic kilometer scale neutrino telescope Baikal-GVD is currently under construction in Lake Baikal. Baikal-GVD is designed to detect Cerenkov radiation from products of astrophysical neutrino interactions with Baikal water by a lattice of photodete ctors submerged between the depths of 1275 and 730 m. The detector components are mounted on flexible strings and can drift from their initial positions upwards to tens of meters. This introduces positioning uncertainty which translates into a timing error for Cerenkov signal registration. A spatial positioning system has been developed to resolve this issue. In this contribution, we present the status of this system, results of acoustic measurements and an estimate of positioning error for an individual component.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا