ترغب بنشر مسار تعليمي؟ اضغط هنا

The reduction theorem for relatively maximal subgroups

81   0   0.0 ( 0 )
 نشر من قبل Danila Revin
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $mathfrak{X}$ be a class of finite groups closed under taking subgroups, homomorphic images and extensions. It is known that if $A$ is a normal subgroup of a finite group $G$ then the image of an $mathfrak{X}$-maximal subgroup $H$ of $G$ in $G/A$ is not, in general, $mathfrak{X}$-maximal in $G/A$. We say that the reduction $mathfrak{X}$-theorem holds for a finite group $A$ if, for every finite group $G$ that is an extension of $A$ (i. e. contains $A$ as a normal subgroup), the number of conjugacy classes of $mathfrak{X}$-maximal subgroups in $G$ and $G/A$ is the same. The reduction $mathfrak{X}$-theorem for $A$ implies that $HA/A$ is $mathfrak{X}$-maximal in $G/A$ for every extension $G$ of $A$ and every $mathfrak{X}$-maximal subgroup $H$ of $G$. In this paper, we prove that the reduction $mathfrak{X}$-theorem holds for $A$ if and only if all $mathfrak{X}$-maximal subgroups are conjugate in $A$ and classify the finite groups with this property in terms of composition factors.

قيم البحث

اقرأ أيضاً

150 - Ashot Minasyan , Denis Osin 2010
Let G be a finitely generated relatively hyperbolic group. We show that if no peripheral subgroup of G is hyperbolic relative to a collection of proper subgroups, then the fixed subgroup of every automorphism of G is relatively quasiconvex. It follow s that the fixed subgroup is itself relatively hyperbolic with respect to a natural family of peripheral subgroups. If all peripheral subgroups of G are slender (respectively, slender and coherent), our result implies that the fixed subgroup of every automorphism of G is finitely generated (respectively, finitely presented). In particular, this happens when G is a limit group, and thus for any automorphism phi of G, Fix(phi) is a limit subgroup of G.
89 - Gareth A. Jones 2018
In 1933 B.~H.~Neumann constructed uncountably many subgroups of ${rm SL}_2(mathbb Z)$ which act regularly on the primitive elements of $mathbb Z^2$. As pointed out by Magnus, their images in the modular group ${rm PSL}_2(mathbb Z)cong C_3*C_2$ are ma ximal nonparabolic subgroups, that is, maximal with respect to containing no parabolic elements. We strengthen and extend this result by giving a simple construction using planar maps to show that for all integers $pge 3$, $qge 2$ the triangle group $Gamma=Delta(p,q,infty)cong C_p*C_q$ has uncountably many conjugacy classes of nonparabolic maximal subgroups. We also extend results of Tretkoff and of Brenner and Lyndon for the modular group by constructing uncountably many conjugacy classes of such subgroups of $Gamma$ which do not arise from Neumanns original method. These maximal subgroups are all generated by elliptic elements, of finite order, but a similar construction yields uncountably many conjugacy classes of torsion-free maximal subgroups of the Hecke groups $C_p*C_2$ for odd $pge 3$. Finally, an adaptation of work of Conder yields uncountably many conjugacy classes of maximal subgroups of $Delta(2,3,r)$ for all $rge 7$.
In this paper, we study a group in which every 2-maximal subgroup is a Hall subgroup.
137 - Michael Handel , Lee Mosher 2013
This is the fourth and last in a series of four papers (with research announcement posted on this arXiv) that develop a decomposition theory for subgroups of $text{Out}(F_n)$. In this paper we develop general ping-pong techniques for the action of $t ext{Out}(F_n)$ on the space of lines of $F_n$. Using these techniques we prove the main results stated in the research announcement, Theorem C and its special case Theorem I, the latter of which says that for any finitely generated subgroup $mathcal H$ of $text{Out}(F_n)$ that acts trivially on homology with $mathbb{Z}/3$ coefficients, and for any free factor system $mathcal F$ that does not consist of (the conjugacy classes of) a complementary pair of free factors of $F_n$ nor of a rank $n-1$ free factor, if $mathcal H$ is fully irreducible relative to $mathcal F$ then $mathcal H$ has an element that is fully irreducible relative to $mathcal F$. We also prove Theorem J which, under the additional hypothesis that $mathcal H$ is geometric relative to $mathcal F$, describes a strong relation between $mathcal H$ and a mapping class group of a surface. v3 and 4: Strengthened statements of the main theorems, highlighting the role of the finite generation hypothesis, and providing an alternative hypothesis. Strengthened proofs of lamination ping-pong, and a strengthened conclusion in Theorem J, for further applications.
In a recent paper of the first author and I. M. Isaacs it was shown that if m = m(G) is the maximal order of an abelian subgroup of the finite group G, then |G| divides m! ([AI18, Thm. 5.2]). The purpose of this brief note is to improve on the m! bou nd (see Theorem 2.1 below). We shall then take up the task of determining when the (implicit) inequality of our theorem becomes an equality. Despite, perhaps, first appearances this determination is not trivial. To accomplish it we shall establish a result (Theorem 2.3) of independent interest and we shall then see that Theorems 2.1 and 2.3 combine to further strengthen Theorem 2.1 (see Theorem 3.4).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا