ﻻ يوجد ملخص باللغة العربية
Let $mathfrak{X}$ be a class of finite groups closed under taking subgroups, homomorphic images and extensions. It is known that if $A$ is a normal subgroup of a finite group $G$ then the image of an $mathfrak{X}$-maximal subgroup $H$ of $G$ in $G/A$ is not, in general, $mathfrak{X}$-maximal in $G/A$. We say that the reduction $mathfrak{X}$-theorem holds for a finite group $A$ if, for every finite group $G$ that is an extension of $A$ (i. e. contains $A$ as a normal subgroup), the number of conjugacy classes of $mathfrak{X}$-maximal subgroups in $G$ and $G/A$ is the same. The reduction $mathfrak{X}$-theorem for $A$ implies that $HA/A$ is $mathfrak{X}$-maximal in $G/A$ for every extension $G$ of $A$ and every $mathfrak{X}$-maximal subgroup $H$ of $G$. In this paper, we prove that the reduction $mathfrak{X}$-theorem holds for $A$ if and only if all $mathfrak{X}$-maximal subgroups are conjugate in $A$ and classify the finite groups with this property in terms of composition factors.
Let G be a finitely generated relatively hyperbolic group. We show that if no peripheral subgroup of G is hyperbolic relative to a collection of proper subgroups, then the fixed subgroup of every automorphism of G is relatively quasiconvex. It follow
In 1933 B.~H.~Neumann constructed uncountably many subgroups of ${rm SL}_2(mathbb Z)$ which act regularly on the primitive elements of $mathbb Z^2$. As pointed out by Magnus, their images in the modular group ${rm PSL}_2(mathbb Z)cong C_3*C_2$ are ma
In this paper, we study a group in which every 2-maximal subgroup is a Hall subgroup.
This is the fourth and last in a series of four papers (with research announcement posted on this arXiv) that develop a decomposition theory for subgroups of $text{Out}(F_n)$. In this paper we develop general ping-pong techniques for the action of $t
In a recent paper of the first author and I. M. Isaacs it was shown that if m = m(G) is the maximal order of an abelian subgroup of the finite group G, then |G| divides m! ([AI18, Thm. 5.2]). The purpose of this brief note is to improve on the m! bou